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TABLE 6.2.1 Elementary Laplace Transforms

f (t) = L−1{F(s)} F(s) = L{ f (t)} Notes

1. 1
1
s

, s > 0 Sec. 6.1; Ex. 4

2. eat 1
s − a

, s > a Sec. 6.1; Ex. 5

3. tn, n = positive integer
n!

sn+ 1
, s > 0 Sec. 6.1; Prob. 31

4. tp, p > −1
!(p + 1)

sp+ 1
, s > 0 Sec. 6.1; Prob. 31

5. sin at
a

s2 + a2
, s > 0 Sec. 6.1; Ex. 7

6. cos at
s

s2 + a2
, s > 0 Sec. 6.1; Prob. 6

7. sinh at
a

s2 − a2
, s > |a| Sec. 6.1; Prob. 8

8. cosh at
s

s2 − a2
, s > |a| Sec. 6.1; Prob. 7

9. eat sin bt
b

(s − a)2 + b2
, s > a Sec. 6.1; Prob. 13

10. eat cos bt
s − a

(s − a)2 + b2
, s > a Sec. 6.1; Prob. 14

11. tneat , n = positive integer
n!

(s − a)n+ 1
, s > a Sec. 6.1; Prob. 18

12. uc(t)
e−cs

s
, s > 0 Sec. 6.3

13. uc(t)f (t − c) e−csF(s) Sec. 6.3

14. ectf (t) F(s − c) Sec. 6.3

15. f (ct)
1
c

F
( s

c

)
, c > 0 Sec. 6.3; Prob. 25

16.
∫ t

0
f (t − τ)g (τ) dτ F(s)G(s) Sec. 6.6

17. δ(t − c) e−cs Sec. 6.5

18. f (n)(t) snF(s) − sn−1f (0) − · · · − f (n−1)(0) Sec. 6.2; Cor. 6.2.2

19. (−t)nf (t) F (n)(s) Sec. 6.2; Prob. 29
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1. (10 points) Consider the ordinary differential equation

(x2 + 1)y′′(x)− 4xy′(x) + 6y(x) = 0.

Solve the system using the power series method. Usually we ask for the first few terms
in the power series solution, but here we are asking for all the terms in the series. This
problem has a surprisingly simple answer because something special happens.
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2. (10 points) Solve the nonhomogeneous boundary value problem. Do not use Fourier
series methods.

y′′ − y = 3x;− ln 2 < x < ln 2

y(− ln 2) = y(ln 2) = 0
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3. (a) (5 points) What is the definition of the Laplace transform F (s) = L(f(t)) for a
given function f(t)?

(b) (5 points) Evaluate the following definite integral:∫ ∞
0

e−(s+3)t cos 5tdt.
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4. Consider the function defined on the interval 0 ≤ x ≤ π.

f(x) =

{
1; 0 ≤ x < π

2
;

0; π
2
≤ x ≤ π.

(a) (4 points) On the left axis, plot three periods of the even periodic extension of f(x).
On the right axis do the same for the odd periodic extension.

(b) (4 points) Find the Fourier sine series of f(x).

(c) (4 points) Solve the BVP for u(x) using a Fourier sine series expansion.

u′′(x) = f(x); 0 < x < π

u(0) = 0;u(π) = 0.
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5. (10 points) Solve the following initial-value problem:

t(ln t)y′ + y = t, y(e) = 1.
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6. (10 points) Solve the initial value problem:

y′′(t) + 9y(t) = uπ(t) sin (t− π);

y(0) = 0; y′(0) = 0.
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7. (10 points) For what non-negative values of α does the following problem have a unique
solution?

y′′(x) + α2y(x) = 0; 0 < x < π

y(0) = 0; y′ (π) = 1.

Note the boundary conditions are different at the two ends!
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8. (10 points) The differential equation

y′′(t)− ty′(t) + y(t) = 0

has one solution y1(t) = t. Find another. You should leave your answer in the form of
an integral.
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9. Consider the differential equation

d

dt
~x =

(
2 2
2 5

)
~x.

(a) (5 points) Find two solutions and show they are linearly independent.

(b) (5 points) Find the solution with initial condition ~x(0) =

(
0
5

)
.
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10. (8 points) Consider the differential equation

d

dt
~x = A~x.

Below are four matrices A and six different descriptions of the behavior of its solutions.
Each description matches at most one matrix. Note there are 6 choices but only 4 right
answers. Please place your answer in the space provided. No partial credit.

(a) A =

(
−5 −2
−2 −2

)
.

(b) A =

(
1 2
−5 3

)
.

(c) A =

(
1 2
4 3

)
.

(d) A =

(
−1 2
−5 1

)
.

(i) Every solution approaches 0 as t →
∞, with no oscillations.

(ii) Has a nonzero solution that ap-
proaches 0 as t → ∞ and has a
nonzero solution that approaches ∞
as t→∞.

(iii) Every nonzero solution diverges as
t→∞.

(iv) Every nonzero solution has oscil-
lations which become progressively
larger as t→∞.

(v) Every nonzero solution has oscil-
lations which become progressively
smaller as t→∞.

(vi) Every nonzero solution oscillates with
constant amplitude.


