

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 138-102: General Calculus I Spring 2020 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Intended for students who are not in Science or in Engineering. An introduction to differential and integral calculus of a single variable.

Number of Credits: 3

Prerequisites: MATH 107 with a grade of C or better, or MATH 110 with a grade of C or better or NJIT placement.

Course-Section and Instructors

Course-Section	Instructor	
Math 138-102	Professor M. Hercules-Menjivar	

Office Hours for All Math Instructors: Spring 2020 Office Hours and Emails

Required Textbook:

Title	Calculus: Concepts and Contexts bundled w/ WebAssign		
Author	Stewart		
Edition	4th		
Publisher	Cengage		
ISBN #	978-1337877367 (WebAssign w/ e-book) 978-0357014356 (WebAssign w/ LL) 978-0357700006 (Cengage Unlimited)		

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, April 6, 2020. It will be strictly enforced.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of

Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	10%
Quizzes	10%
Midterm Exam I	10%
Midterm Exam II	20%
Assignment	20%
Final Exam	30%

Your final letter grade will be based on the following tentative curve. **NOTE**: This course needs to be passed with a grade of C or better in order to proceed to Math 238 or Math 246.

A	90 - 100	С	70 - 74
B+	85 - 89	D	60 - 69
В	80 - 84	F	0 - 59
C+	75 - 79		

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced. AttendanceNote

Exams: There will be three midterm exams held in class during the semester and one comprehensive final exam. Exams are held on the following weeks:

Midterm Exam I	Week 4
Midterm Exam II	Week 8
Midterm Exam III	Week 12
Final Exam Period	May 8 - 14, 2020

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Spring 2020 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular

office hours during the week. These office hours are listed on the Math Department's webpage for Instructor Office Hours and Emails.

All students must familiarize themselves with and adhere to the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. The Department of Mathematical Sciences takes these policies very seriously and enforces them strictly.

Accommodation of Disabilities: Disability Support Services (DSS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services at 973-596-5417 or via email at lyles@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Disability Support Services (DSS) website at:

https://www.njit.edu/studentsuccess/accessibility/

Important Dates (See: Spring 2020 Academic Calendar, Registrar)

Date	Day	Event
January 21, 2020	Т	First Day of Classes
January 31, 2020	F	Last Day to Add/Drop Classes
March 15 - 22, 2020	Su-Su	Spring Recess: No Classes/ University Open
April 6, 2020	Μ	Last Day to Withdraw
April 10, 2020	F	Good Friday - University Closed
May 5, 2020	Т	Friday Classes Meet - Last Day of Classes
May 6 & 7, 2020	W & R	Reading Days
May 8 - 14, 2020	F-R	Final Exam Period

Course Outline

Week	Section	Title	Homework
1	1.1 Four Ways to Represent a Function		ex. 5 - 8, 29 - 33
	1.2	A Catalog of Essential Functions	ex. 1, 2
	1.3	New Functions from Old Functions	ex. 1, 2, 3
2	2.2	The Limit of a Function	ex. 4, 6, 14, 16
	2.3	Calculating Limits Using the Limit Laws	ex. 12, 16, 18, 20
3	2.5	Limits Involving Infinity	ex. 3, 4, 5, 7, 15, 16, 17, 19, 20, 22, 23, 24
	2.6	Derivatives and Rates of Change	ex. 5, 7, 9ab, 13, 15, 43ab, 45, 47
4		MIDTERM I	
5	2.7	The Derivative as a Function	ex. 3, 4, 5, 6, 14, 15, 16
	3.1	Derivatives of Polynomials and Exponential	ex. 3 - 28, 45, 49, 50,

		Functions	
6	3.2	The Product and Quotient Rules	ex. 3 - 15, 29, 30, 33a, 35a, 39,
	3.3	Derivatives of Trigonometric Functions	ex. 1 - 14, 19 - 22, 23a, 25a, 27, 28, 31
7	3.4	Chain Rule	ex. 7 - 29 odd, 37, 38
	3.5	Implicit Differentiation	ex. 3 - 16, 21 - 28
8		MIDTERM II	
9	3.7	Derivatives of Logarithmic Functions	ex. 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14
	3.8	Rates of Change in the Natural and Social Sciences	ex. 1, 4, 7, 8, 9, 10, 11a, 12a, 13ab, 14, 15, 16ab
10	4.1	Related Rates	ex. 2 - 23 odd
	4.2	Minimum and Maximum Values	ex. 3, 5, 23, 25, 27, 29, 41 - 51 odd
11	4.3	Derivatives and Shapes of Curves	ex. 7 - 16, 21 - 26
	4.6	Optimization Problems	ex. 5, 6, 9 - 12, 14, 15, 18, 23, 40
12		MIDTERM III	
13	4.8	Antiderivatives	ex. 1 - 47 odd
	5.1	Areas and Distances	ex. 1,2,3
14	5.2	The Definite Integral	ex: 5,
	5.3	Evaluating Definite Integrals	ex: 1-27 odd
15	5.4	The Fundamental Theorem of Calculus	Ex: 7-18 All
		REVIEW FOR FINAL EXAM	

Updated by Professor M. Hercules- 1/20/2020 Department of Mathematical Sciences Course Syllabus, Spring 2020