

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 665: Statistical Inference Spring 2023 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Review of sampling distributions. Data reduction principles: sufficiency and likelihood. Theory and methods of point estimation and hypothesis testing, interval estimation, nonparametric tests, introduction to linear models.

Number of Credits: 3

Prerequisites: MATH 662 or departmental approval.

Course-Section and Instructors:

Course-Section	Instructor
Math 665-102	Professor S. Subramanian

Office Hours for All Math Instructors: Spring 2023 Office Hours and Emails

Required Textbook:

Title	Introduction to Mathematical Statistics
Author	Hogg, McKean, Craig
Edition	8th
Publisher	Pearson
ISBN #	978-0134686998

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, April 3, 2023. It will be strictly enforced.

COURSE GOALS

Course Objectives

This course will focus on mathematical methods for statistical inference. Topics include review of sampling distributions, data reduction principles: sufficiency and likelihood, theory and methods of point estimation and hypothesis testing, interval estimation, and bootstrap procedures.

Course Outcomes On successful completion, students will be able to demonstrate understanding of the following topics:

- 1. Consistency and asymptotic normality
- 2. Delta method
- 3. Maximum likelihood estimation
- 4. Sufficiency
- 5. Minimum variance unbiased estimation
- 6. Hypothesis tests; uniformly most powerful tests; likelihood ratio tests

Course Assessment: Will be based on regular homework, two midterm exams, and one final exam.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	20%
Midterm Exams	50%
Final Exam	30%

Your final letter grade will be based on the following tentative curve.

А	90 - 100	C+	75 - 79
B+	85 - 89	С	66 - 74
В	80 - 84	F	0 - 65

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy.

Homework: Homework assignments are due within a week unless announced otherwise by the instructor. Late homework will not be accepted.

Exams: Two in-class midterm examinations and one final examination will be given as shown below. The indicated midterm exam dates are tentative and may be subject to change.

Midterm Exam I	February 28, 2023
----------------	-------------------

Midterm Exam II	April 11, 2023
Final Exam Period	May 5 - May 11, 2023

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for Instructor Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Scott Janz, Associate Director of Disability Support Services at 973-596-5417 or via email at scott.p.janz@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Office of Accessibility Resources and Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/accessibility/

Important Dates (See: Spring 2023 Academic Calendar, Registrar)

Date	Day	Event
January 17, 2023	Tuesday	First Day of Classes
January 23, 2023	Monday	Last Day to Add/Drop Classes
March 13, 2023	Monday	Spring Recess Begins
March 18, 2023	Saturday	Spring Recess Ends
April 3, 2023	Monday	Last Day to Withdraw
April 7, 2023	Friday	Good Friday - No Classes
May 2, 2023	Tuesday	Friday Classes Meet

May 2, 2023	Tuesday	Last Day of Classes
May 3 - May 4, 2023	Wednesday and Thursday	Reading Days
May 5 - May 11, 2023	Friday to Thursday	Final Exam Period

Course Outline

Week	Section	Торіс	
Week 1	Chapter 4	Some Elementary Statistical Inference	
1/17		Sampling and statistics; confidence intervals; hypothesis testing.	
Week 2	Chapter 5	Consistency and limiting distributions	
1/24		Consistency; central limit theorem; delta method; moment generating functions	
Week 3 1/31	Chapter 6	Maximum likelihood Methods	
		Rao-Cramer lower bound and efficiency; plug-in estimators; method of moments	
Week 4	Chapter 6	Maximum likelihood Methods	
2/7		Maximum likelihood tests; multiparameter case: estimation and testing	
Week 5 2/14	Chapter 7	Sufficiency	
2/14		Sufficient statistic and properties: Rao Blackwell; completeness and uniqueness	
Week 6	Chapter 7	Sufficiency (continued)	
2/21		Minimum variance unbiased estimators; exponential family; functions of a parameter	
Week 7 2/28	MIDTERM I	EXAM I: TUESDAY ~ FEBRUARY 28, 2023	
Week 8 3/7	Chapter 7	Sufficiency (continued)	
		Minimal sufficiency; ancillary statistics. Sufficiency, completeness and independence	
Week of 3/13-18		SPRING RECESS (NO CLASSES)	
Week 9 3/21	Chapter 8	Optimal Tests of Hypotheses	
		Most powerful tests; Neyman-Pearson lemma	
Week 10 3/28	Chapter 8	Optimal Tests of Hypotheses (continued)	
		Uniformly most powerful tests; likelihood ratio tests	

Week 11 4/4	Chapter 8	Optimal Tests of Hypotheses (continued) Monotone likelihood ratio
Week 12 4/11	MIDTERM	EXAM II: TUESDAY ~ APRIL 11, 2023
Week 13 4/18	Chapter 8	Optimal Tests of Hypotheses (continued) The sequential probability ratio test
Week 14 4/25	Chapter 4	Bootstrap procedures (if time permits)
WeeK 15 5/2		Friday classes meet

Updated by Professor S. Subramanian - 1/13/2023 Department of Mathematical Sciences Course Syllabus, Spring 2023