

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 337 Honors: Linear Algebra - Honors Spring 2023 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Matrices, determinants, systems of linear equations, vector spaces, linear transformations, eigenvalues, eigenvectors, and related topics. Similar to Math 337 but with more emphasis on rigor and proof.

Number of Credits: 3

Prerequisites: MATH 112 with a grade of C or better or MATH 133 with a grade of C or better.

Course-Section and Instructors:

Course-Section	Instructor
Math 337-H02	Professor T. Askham

Office Hours for All Math Instructors: Spring 2023 Office Hours and Emails

Required Textbook:

Title	Linear Algebra Done Wrong
Author	Sergei Treil
Edition	September 4, 2017
Publisher	Sergei Treil
Link	https://www.math.brown.edu/streil/papers/LADW/LADW.html

Supplementary Textbook:

Title	A First Course in Linear Algebra
Author	K. Kuttler and I. Farah
Edition	Version 2021 A
Publisher	Lyryx Learning Inc
Link	Available in Canvas

University-wide Withdrawal Date: The last day to withdraw with a W is Monday, April 3, 2023. It will be strictly enforced.

COURSE GOALS

Course Objectives:

The course seeks to develop

- understanding of the fundamental concepts of linear structure that support theoretical, applied and computational analysis including Rⁿ and Cⁿ, linear combination, span, linear independence, basis and dimension, Euclidean structure, matrices and linear transformations, invertibility, rank, null space, column space, and determinant,
- understanding of the fundamental algorithms of elementary linear algebra, Gaussian elimination and the Gram-Schmidt process, including proficiency in implementation both with pen and paper and by computer program,
- the ability to use linear theory to analyze problems common in applications including systems of linear equations, detection linear dependence relations, LU factorization, eigenvalue problems, orthogonalization, QR factorization, least squares solutions, and the singular value decomposition,
- basic proficiency, both with pen and paper and by computer program, with the use of the fundamental
 algorithms of elementary linear algebra for the solution of common problems including those listed
 above,
- the capacity to apply linear algebra through treatment of applications such as balancing chemical equations and computer graphics.
- Familiarity with the axiomatic treatment of linear algebra, including methods of proof.

Course Outcomes:

Students will be able to

- understand and utilize the basic concepts, algorithms and problems of linear algebra to analyze basic applied problems,
- Write cogent proofs,
- Implement basic solutions to problems of applied linear algebra both by hand and computer program (MATLAB),
- apply their understanding of linear algebra in appropriately formulated applications.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	15%
MATLAB Assignments	15%
Midterm Exams	20% (x2)
Final Cumulative Exam	30%

Your final letter grade will be based on the following tentative curve.

Α	90 - 100	С	70 - 74
B+	85 - 89	D	60 - 69
В	80 - 84	F	0 - 59
C+	75 - 79		

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

Homework: Homework will be distributed and collected on Canvas approximately weekly, with exercises from LADW and other sources.

MATLAB Projects: Students are expected to complete the MATLAB onramp. There will be 2 or 3 medium scale MATLAB projects.

Exams: There will be two exams during the semester and a cumulative final exam during the final exam week:

Midterm Exam I (1.1-1.8, 2.1-2.6)	February 22, 2023
Midterm Exam II (2.7-2.8, 3.1-3.5, 4.1-4.2)	April 5, 2023
Final Exam Period	May 5 - May 11, 2023

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for

missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Spring 2023 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for **Instructor** Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Scott Janz, Associate Director of Disability Support Services at 973-596-5417 or via email at scott.p.janz@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Office of Accessibility Resources and Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/accessibility/

Important Dates (See: Spring 2023 Academic Calendar, Registrar)

Date	Day	Event
January 17, 2023	Tuesday	First Day of Classes
January 23, 2023	Monday	Last Day to Add/Drop Classes
March 13, 2023	Monday	Spring Recess Begins
March 18, 2023	Saturday	Spring Recess Ends
April 3, 2023	Monday	Last Day to Withdraw
April 7, 2023	Friday	Good Friday - No Classes
May 2, 2023	Tuesday	Friday Classes Meet
May 2, 2023	Tuesday	Last Day of Classes
May 3 - May 4, 2023	Wednesday and Thursday	Reading Days
May 5 - May 11, 2023	Friday to Thursday	Final Exam Period

Course Outline

Week	Sections	Topics
1	1.1-1.2	Vector space definitions, linear combos, bases
2	1.3-1.6	Matrix algebra
3	1.6-1.8	Inverses, subspaces, computer graphics
4	2.1-2.3	Row reduction and analysis of pivots
5	2.4-2.6	General solution of a linear system and the concept of dimension
6	2.7-2.8	Fundamental subspaces, representation formulas (MIDTERM I on Wednesday)
7	3.1-3.3	Determinant concept and definition
8	3.4-3.5, 4.1	More on the determinant; introduction to eigenvalues
9	4.2	More on eigenvalues
10	5.1-5.2	Introduction to inner product spaces
11	5.3-5.4	Gram Schmidt algorithm and least squares problems (MIDTERM II on Wednesday)
12	5.5-5.6, 6.1	Adjoints, fundamental subspaces revisited, unitary operators, Schur decomposition
13	6.2-6.3	Spectral theorem for normal operators, singular value decomposition
14	6.4, 7.1-7.2	Applications of singular value decomposition, diagonalizing quadratic forms

Updated by Professor T. Askham - 1/11/2023 Department of Mathematical Sciences Course Syllabus, Spring 2023