Math 337 — Exam 1 — f2018

1) (20 points) Given the system

\[\begin{align*}
3x_1 - 3x_2 + 3x_3 + 9x_4 &= b_1 \\
2x_1 - x_2 + 4x_3 + 7x_4 &= b_2 \\
3x_1 - 5x_2 - x_3 + 7x_4 &= b_3
\end{align*} \]

a) Write the system in the matrix form \(Ax = b \) with \(x = (x_1, x_2, x_3) \) and \(b = (b_1, b_2, b_3)^T \).

b) Is the system \(Ax = b \) solvable for each \(b \) in \(\mathbb{R}^3 \)?

c) Find the general solution of \(Ax = (3, 2, 3)^T \) in the form \(x = p + x_h \). Explain what \(p \) and \(x_h \) represent.

d) Does \(A \) have an inverse?

2) (20 points) Let \(T : \mathbb{R}^4 \rightarrow \mathbb{R}^3 \) be given by \(T(x_1, x_2, x_3, x_4) = (x_1 + x_2 - x_4, 2x_2 + x_3 + 4x_4, 3x_3 + 5x_4) \).

a) Find the standard matrix of \(T \).

b) Is \(T \) onto? one-to-one? Explain.

c) Are there any vectors \(x \) such that \(Tx = (2, -1, 3)^T \).

3) (20 points) a) Find the inverse of the matrix \(A = [(0, 2, -1)^T, (1, -2, 1)^T, (1, 0, 1)^T, (-1, -1, 1)^T] \)?

b) Are the columns of \(A \) linearly independent? Explain.

4) (15 points) Find an LU factorization of \(A = [(1, -1, 4, -2)^T, (3, -5, 2, -4)^T, (-5, 8, -5, 7)^T, (-3, 4, -7, 5)^T] \).

5) (15 points) Let \(A = LU \) with \(L = [(1, -2, 1, -2)^T, (0, 1, 2, -1)^T, (0, 0, 1, 0)^T, (0, 0, 0, 1)^T] \) and \(U = [(1, 0, 0, 0)^T, (3, -2, 0, 0)^T, (-5, 1, 0, 0)^T, (-3, 1, 0, 0)^T] \). Use the LU factorization of \(A \) to solve the system \(Ax = (1, 2, 9, -6)^T \).

6) (10 points) Let \(A \) be an \(m \) by \(n \) matrix and \(r \) be the number of its pivot columns. What are the conditions on \(m, n \) and \(r \) (other than \(r \leq m \) and \(r \leq n \) which is always true) such that the system \(Ax = b \)

a) has infinitely many solutions for each \(b \)?

b) has exactly one solution for each \(b \)?