THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 332: Introduction to Functions of a Complex Variable Fall 2021 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Functions of a complex variable: Cauchy-Riemann equations, Cauchy-Goursat theorem, integration, series, residues, poles, geometrical aspects. Emphasis on techniques. Effective From: Fall 2010.

Number of Credits: 3

Prerequisites: MATH 211 or MATH 213 and MATH 222 all with a grade of C or better

Course-Section and Instructors:

Course-Section	Instructor	
Math 322-001	Professor E. Lushi	

Class time: Tuesdays and Thursdays 11:30-12:50pm, face-to-face in FMH 110.

Office Hours for All Math Instructors: Fall 2021 Office Hours and Emails

Required Textbook:

Title	Complex Variables and Applications	
Author	Brown	
Edition	9th	
Publisher	McGraw-Hill	
ISBN #	978-0073383170	

University-wide Withdrawal Date: The last day to withdraw with a W is Wednesday, November 10, 2021. It will be strictly enforced.

COURSE GOALS

Course Objectives

- Understand the relevance and broad importance of the theory of analytic functions.
- Learn the meaning of theorems and corollaries describing important properties of analytic functions.
- Learn the connection between the series representations and integration properties of analytic functions.
- Learn applications of the Cauchy Residue Theorem, in particular its use in calculating certain definite
 integrals. Learn how to apply the knowledge of analytic functions to problems in applied mathematics,
 science and engineering.

Course Outcomes

- Students gain deeper knowledge of the theory of analytic functions of a complex variable, and its broad applicability.
- Students gain a deeper understanding of common elementary transcendental functions through the knowledge of their properties in the complex plane.
- Students are prepared for further study in more advanced mathematics, science and engineering courses.
- Students can apply their knowledge of the theory of analytic functions to solve problems in applied mathematics, fluid dynamics, electrodynamics, and other areas of science and engineering.

Course Assessment: The assessment of objectives is achieved through homework assignments and quizzes, and the in-class midterm and final examinations.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework and Quizzes	30%
Midterm Exam	30%
Final Exam	40%

Your final letter grade will be based on the following tentative curve.

Α	86 - 100	C+	61 - 68
B+	78 - 85	С	53 - 60
В	69 - 77	F	0 - 52

Attendance Policy: Attendance at all classes will be recorded and is **mandatory**. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

Homework: Homework problem sets will be posted on the course canvas page at the end of each week, based on the material covered that week. Late homework will not be accepted. A short quiz based on the homework problems will be given every other week, and will be announced at least one day in advance.

Exams: There will be one midterm exam and one comprehensive final exam. Exams will be tentatively held on the following days:

Midterm Exam	October 26, 2021
Final Exam Period	December 15 - 21, 2021

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Fall 2021 Hours)

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for **Instructor** Office Hours and Emails.

All students must familiarize themselves with and adhere to the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. The Department of Mathematical Sciences takes these policies very seriously and enforces them strictly.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Scott Janz, Associate Director of Disability Support Services at 973-596-5417 or via email at scott.p.janz@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Office of Accessibility Resources and Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/studentsuccess/accessibility/

Important Dates (See: Fall 2021 Academic Calendar, Registrar)

Date	Day	Event
September 1, 2021	Wednesday	First Day of Classes
September 4, 2021	Saturday	Saturday Classes Begin
September 6, 2021	Monday	Labor Day
September 8, 2021	Wednesday	Monday Classes Meet
September 8, 2021	Wednesday	Last Day to Add/Drop Classes
November 10, 2021	Wednesday	Last Day to Withdraw
November 25 to November 28, 2021	Thursday to Sunday	Thanksgiving Recess - Closed
December 10, 2021	Friday	Last Day of Classes

Course Outline

Date	Lecture	Sections	Торіс	
September 02	1	1-5	Complex Algebra; Vectors & Moduli; Complex Conjugate	
September 07 September 09	2 3	6-11 12	Polar Representation; Products & Powers in Exponential Form; Roots Regions in the Complex Plane	
September 14	4	13-14	Functions of Complex Variable; Mappings	
September 16	5	15-18	Limits and Continuity	
September 21	6	19-23	Derivatives & Analyticity; The Cauchy-Riemann Equations	
September 23	7	24-26	Analyticity; Cauchy-Riemann Equations in Polar Coordinates	
September 28 September 30	8 9	27-29 30-36	Harmonic Functions; Uniquely Determined Functions; Reflection Principle The Exponential and Logarithm, The Power Function	
October 05	10	37-39	Trigonometric and Hyperbolic Functions	
October 07	11	40	Inverse Trigonometric & Inverse Hyperbolic Functions	
October 12	12	41-49	Contour Integrals; Fundamental Theorem of Calculus	
October 14	13	50-54	The Cauchy-Goursat Theorem & The Cauchy Integral Formula	
October 19 October 21	14 15	55-59	The Extensions of the Cauchy Integral Formula Review for the Midterm Exam	
October 26 October 28	16 17	60-65	MIDTERM Taylor Series; Power Series Convergence	
November 02	18	66-68	Laurent Series Uniform Convergence; Integration & Differentiation of Power Series	
November 04	19	69-72		
November 09	20	73	Series Multiplication, Division, Composition	
November 11	21	74-76	Cauchy's Residue Theorem	
November 16	22	77-84	Zeros and Singularities; The Point at Infinity	
November 18	23	85-87	Improper Integrals from Fourier Analysis	
November 23	24	88	Improper Integrals Continued: Jordan's Lemma	

November 30	25	89-90	Integrals Involving Indented Contours
December 02	26	91	Integration along a Branch Cut
December 07 December 09	27 28	92	Definite Integrals Involving Sines and Cosines REVIEW FOR FINAL EXAM

Updated by Professor E. Lushi - 8/18/2021 Department of Mathematical Sciences Course Syllabus, Fall 2021