
Math 110 Common Exam #3 November 20, 2024

	Problem	Score
Time: 1 hour and 25 minutes	1	
Instructions: Show all work for full credit.		
No outside materials or calculators allowed.	2	
Extra Space: Use the backs of each sheet		
for extra space. Clearly label when doing so.	3	
Name:	4	
ID #:		
	5	
Instructor/Section:		
	6	
"I pledge by my honor that I have abided by the		
NJIT Academic Integrity Code."	7	
(Signature)		
	8	

9

1. Find the exact value of $\cos(157.5^\circ)$ (6 pts)

2. Find the standard form of the equation for the ellipse below: (6 pts)

3. Given that $sin\theta = -\frac{9}{41}$, θ in Q3, find the exact value of: (18 points total)

a. $tan2\theta$

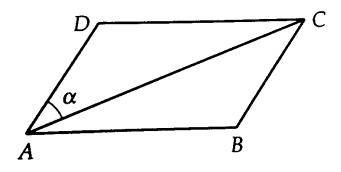
b. *cos2θ*

c. What quadrant is 2θ located in? Give justification for your answer.

4. Solve the following equations for all possible solutions: (5 pts each)

a.
$$\frac{-2-\sqrt{3}}{2} = -1 + cosx$$

b.
$$\cos\left(2x - \frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$


c.
$$\cos^2 x + 4 = 2\sin x - 3$$

d.
$$\sin(e^x) = 1$$

5. Verify the following identity: $\left(\cos\frac{x}{2} + \sin\frac{x}{2}\right)^2 = 1 + \sin x$. (6 pts)

- 6. True/False (no work needed) (3 pts each)
 - a. Solving a SSA triangle using Law of Sines or Law of Cosines can only result in 0 or 1 solution
 - b. Heron's Formula can be used to solve a triangle with given angles, A, B, and C
 - c. A bearing of $S 35^{\circ} E$ is in quadrant 3
 - d. In the equation for half angle of cosine, $cos \frac{\theta}{2} = \pm \sqrt{\frac{1+cos\theta}{2}}$, the decision between + or depends on the quadrant in which $\frac{\theta}{2}$ lies.

7. The longer side of the parallelogram below has a measure of 6 units. The measure of angle BAD is 56°, and $\alpha = 35^{\circ}$. Find the length of the longer diagonal. (6 pts)

8. Find the general form of the equation of a circle that has center (-4, -2) and contains the point (1, -2) on the edge. (6 pts)

- 9. Solve the following equations for all solutions within the interval $0 \le x < 2\pi$. (5 pts each)
 - a. sin3x sinx = 0

b. $2 - 3sec\theta = -2sec\theta$

c.
$$2 - 6 \tan\left(\theta + \frac{4\pi}{3}\right) = -3\sqrt{3} + 2 + 3 \tan\left(\theta + \frac{4\pi}{3}\right)$$

d. 2sinxcosx - cosx = 0