1. (a) Let V and W be finite-dimensional vector spaces and let $T: V \rightarrow W$ be a linear map. Show that $(\operatorname{im}(T))^{\perp}=\operatorname{ker}\left(T^{\prime}\right)$ and $\operatorname{im}(T)=\left(\operatorname{ker}\left(T^{\prime}\right)\right)^{\perp}$, where in the second equality we have used the canonical identification of an element in W with an element in its double dual $W^{\prime \prime}$.
(b) Consider the vector space $V=\operatorname{Span}\{\sin (2 t), \cos (2 t)\}$. Find the matrix associated with the linear operator $T: V \rightarrow V$ in the basis $\{\sin (2 t), \cos (2 t)\}$, where

$$
T=\frac{d^{2}}{d t^{2}}+5 \frac{d}{d t}+4 I .
$$

(c) Let T and V be as in part (b). Is T invertible? If so, find an expression for T^{-1} and the associated matrix.
2. Let A be an $n \times n$ matrix and let E be an $n \times n$ elementary matrix, $n \geq 2$. Show that $\operatorname{det}(E A)=\alpha \operatorname{det}(A)$, where

$$
\alpha= \begin{cases}1 & \text { if } E \text { corresponds to a row-replacement } \\ -1 & \text { if } E \text { corresponds to a row interchange } . \\ r & \text { if } E \text { corresponds to a scaling by } r\end{cases}
$$

3. Let * denote the adjoint of an operator. Let V and W be inner-product spaces and let $A: V \rightarrow W$ be an injective linear operator. For $b \in W$, let \hat{x} be the least squares solution of $A x=b$ given by

$$
\hat{x}=\operatorname{argmin}_{x \in V}\|A x-b\|_{W} .
$$

(a) Show that $A \hat{x}=b_{p}$, where b_{p} is the orthogonal projection of b onto $\operatorname{im}(A)$.
(b) Show that $A^{*} A$ is invertible and $\hat{x}=\left(A^{*} A\right)^{-1} A^{*} b$.
(c) Use the QR decomposition to solve the least squares problem $A x=b$, where

$$
A=\left(\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right), \quad b=\left(\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right)
$$

