Ph.D. Qualifying Exam A

Probability Distributions and Regression Analysis

May 26, 2023

1. (20 points) Suppose **X** has a $N_n(\mu, \Sigma)$, distribution, which is partitioned as $\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$, with mean and variance-covariance matrix, $\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$, $\begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$, respectively. Let \mathbf{X}_1 be of dimension m < n and \mathbf{X}_2 of dimension n - m. Assume that Σ is positive definite. Then derive the conditional distribution of $\mathbf{X}_1 | \mathbf{X}_2$ to be $N_m(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{X}_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$.

2. (20 points) Prove that

$$\lim_{n \to \infty} \left[1 + \frac{b}{n} + \frac{\psi(n)}{n} \right]^{cn} = e^{bc},$$

where b and c do not depend on n and

$$\lim_{n \to \infty} \psi(n) = 0.$$

3. (20 points) Let (X, Y) be bivariate random variables whose joint cumulative distribution function (c.d.f.) is continuous. Show how the computation of $P(x < X \le x + \epsilon_1, y < Y \le y + \epsilon_2)$, for all x, y and any $\epsilon_1, \epsilon_2 > 0$, gives rise to the joint probability density function (p.d.f.) of (X, Y). Give an example of the use of this result to compute the joint p.d.f. of the j^{th} and k^{th} order statistics, j < k, from a random sample $X_1, ..., X_n$ from some distribution with continuous c.d.f. F. 4. (20 points) Consider the normal error simple linear regression model:

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

for $i \in \{1, 2, ..., n\}$ and ϵ_i are independently identically distributed as $N(0, \sigma^2)$ distribution.

- (a) Show that the corresponding mean residual sum of squares (EMS) has the expectation $E(EMS) = \sigma^2$.
- (b) Show that the corresponding mean regression sum of squares (RMS) has the expectation:

$$E(RMS) = \sigma^{2} + \beta_{1}^{2} \sum_{i=1}^{n} (X_{1} - \bar{X})^{2}$$

- (c) Prove that $F = RMS/EMS \sim F_{1,n-2}$ under $H_0: \beta_1 = 0$.
- 5. (20 points) Consider the quadratic form Y'AY, where A is a $n \times n$ symmetric and idempotent square matrix and Y is a $n \times 1$ vector following normal distribution with zero mean and variance-covariance matrix $\sigma^2 I$, show that $Y'AY/\sigma^2$ follows a Chi-square distribution with degree of freedom equal to the rank of A.
- 6. (20 points) Consider the multiple linear regression model

$$Y = X\beta + \epsilon$$
 where $\epsilon \sim N(0, \sigma^2 I)$

Assume that σ^2 is unknown. The unknown vector β has dimension $p \times 1$ with p = k + 1, and k is the number of covariates in the model. Consider following partitioning:

$$X = (X_1, X_2), \beta = (\beta'_1, \beta'_2)'$$

such that

$$X\beta = X_1\beta_1 + X_2\beta_2.$$

Consider the following models:

Model 1:
$$Y = X_1\beta_1 + X_2\beta_2 + \epsilon$$

and

Model 2 :
$$Y = X_1\beta_1 + \epsilon$$
.

Show that $\text{RegSS}_1 \ge \text{RegSS}_2$, where RegSS_i are the regression sum of squares for model i for $i \in \{1, 2\}$.