Ph.D. Qualifying Exam A

Probability Distributions and Regression Analysis

May 26, 2023

1. (20 points) Suppose \mathbf{X} has a $N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, distribution, which is partitioned as $\left[\begin{array}{l}\mathbf{X}_{\mathbf{1}} \\ \mathbf{X}_{\mathbf{2}}\end{array}\right]$, with mean and variance-covariance matrix, $\left[\begin{array}{l}\boldsymbol{\mu}_{\boldsymbol{1}} \\ \boldsymbol{\mu}_{2}\end{array}\right],\left[\begin{array}{cc}\boldsymbol{\Sigma}_{\mathbf{1 1}} & \boldsymbol{\Sigma}_{\mathbf{1 2}} \\ \boldsymbol{\Sigma}_{\mathbf{2 1}} & \boldsymbol{\Sigma}_{\mathbf{2 2}}\end{array}\right]$, respectively. Let $\mathbf{X}_{\mathbf{1}}$ be of dimension $m<n$ and $\mathbf{X}_{\mathbf{2}}$ of dimension $n-m$. Assume that $\boldsymbol{\Sigma}$ is positive definite. Then derive the conditional distribution of $\mathbf{X}_{1} \mid \mathbf{X}_{2}$ to be $N_{m}\left(\boldsymbol{\mu}_{\mathbf{1}}+\boldsymbol{\Sigma}_{\mathbf{1 2}} \boldsymbol{\Sigma}_{\mathbf{2 2}}^{\boldsymbol{- 1}}\left(\mathbf{X}_{\mathbf{2}}-\boldsymbol{\mu}_{\mathbf{2}}\right), \boldsymbol{\Sigma}_{\mathbf{1 1}}-\boldsymbol{\Sigma}_{\mathbf{1 2}} \boldsymbol{\Sigma}_{\mathbf{2 2}}^{\boldsymbol{- 1}} \boldsymbol{\Sigma}_{\mathbf{2 1}}\right)$.
2. (20 points) Prove that

$$
\lim _{n \rightarrow \infty}\left[1+\frac{b}{n}+\frac{\psi(n)}{n}\right]^{c n}=e^{b c}
$$

where b and c do not depend on n and

$$
\lim _{n \rightarrow \infty} \psi(n)=0 .
$$

3. (20 points) Let (X, Y) be bivariate random variables whose joint cumulative distribution function (c.d.f.) is continuous. Show how the computation of $P\left(x<X \leq x+\epsilon_{1}, y<Y \leq\right.$ $y+\epsilon_{2}$), for all x, y and any $\epsilon_{1}, \epsilon_{2}>0$, gives rise to the joint probability density function (p.d.f.) of (X, Y). Give an example of the use of this result to compute the joint p.d.f. of the $j^{t h}$ and $k^{t h}$ order statistics, $j<k$, from a random sample X_{1}, \ldots, X_{n} from some distribution with continuous c.d.f. F.
4. (20 points) Consider the normal error simple linear regression model:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}
$$

for $i \in\{1,2, \ldots, n\}$ and ϵ_{i} are independently identically distributed as $N\left(0, \sigma^{2}\right)$ distribution.
(a) Show that the corresponding mean residual sum of squares (EMS) has the expectation

$$
E(E M S)=\sigma^{2}
$$

(b) Show that the corresponding mean regression sum of squares (RMS) has the expectation:

$$
E(R M S)=\sigma^{2}+\beta_{1}^{2} \sum_{i=1}^{n}\left(X_{1}-\bar{X}\right)^{2}
$$

(c) Prove that $F=R M S / E M S \sim F_{1, n-2}$ under $H_{0}: \beta_{1}=0$.
5. (20 points) Consider the quadratic form $Y^{\prime} A Y$, where A is a $n \times n$ symmetric and idempotent square matrix and Y is a $n \times 1$ vector following normal distribution with zero mean and variance-covariance matrix $\sigma^{2} I$, show that $Y^{\prime} A Y / \sigma^{2}$ follows a Chi-square distribution with degree of freedom equal to the rank of A.
6. (20 points) Consider the multiple linear regression model

$$
Y=X \beta+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2} I\right)
$$

Assume that σ^{2} is unknown. The unknown vector β has dimension $p \times 1$ with $p=k+1$, and k is the number of covariates in the model. Consider following partitioning:

$$
X=\left(X_{1}, X_{2}\right), \beta=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)^{\prime}
$$

such that

$$
X \beta=X_{1} \beta_{1}+X_{2} \beta_{2}
$$

Consider the following models:

$$
\text { Model } 1: Y=X_{1} \beta_{1}+X_{2} \beta_{2}+\epsilon
$$

and

Model $2: Y=X_{1} \beta_{1}+\epsilon$.

Show that $\operatorname{RegSS}_{1} \geq \operatorname{RegSS}_{2}$, where RegSS_{i} are the regression sum of squares for model i for $i \in\{1,2\}$.

