Ph.D. Qualifying Exam A
 Probability Distributions and Regression Analysis
 January 10, 2023

1. Let Y_{1}, \ldots, Y_{5} be a random sample of size 5 from a standard normal distribution and $\bar{Y}=$ $\sum_{i=1}^{5} Y_{i} / 5$. Let Y_{6} be another observation independent of $\left(Y_{1}, \ldots, Y_{5}\right)$ also from the standard normal distribution. Prove that $a \bar{Y}+b Y_{6}$ is independent of the sample variance, S^{2} based on Y_{1}, \ldots, Y_{5}, where a and b are any two fixed real numbers.
2. Let X_{n} and Y_{n} be random variables such that X_{n} and Y_{n} are independent for each $n \geq 1$ and their moment generating functions (m.g.f.'s) exist on the real line. If X_{n} converges to X in distribution and Y_{n} converges to Y in distribution, where X and Y are random variables, derive the limiting distribution of $a X_{n}+b Y_{n}$, where a and b are any two fixed real numbers.
3. Let $\left(X_{1}, X_{2}, \ldots, X_{k-1}\right)$ have a multinomial distribution with parameters $\left(n, p_{1}, p_{2}, \ldots, p_{k-1}\right)$, where $0<p_{i}<1, i=1, \ldots, k, p_{1}+p_{2}+\ldots+p_{k}=1$, and $X_{k}=n-\left(X_{1}+X_{2}+\ldots+X_{k-1}\right)$. (a) Find the m.g.f. of $\left(X_{2}, \ldots, X_{k-2}\right)$.(b) What is the joint probability mass function (p.m.f.) of $\left(X_{2}, X_{3}, \ldots, X_{k-2}\right)$? (c) Determine the conditional joint p.m.f. of $\left(X_{1}, X_{k-1}\right)$ given that $X_{2}=x_{2}, \ldots, X_{k-2}=x_{k-2}$.
4. Consider the normal error linear regression model with two explanatory variables:

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\epsilon_{i}
$$

for $i \in\{1,2, \ldots, n\}$ and ϵ_{i} are independently identically distributed as $N\left(0, \sigma^{2}\right)$ distribution.
(a) Show that the corresponding mean residual sum of squares (EMS) has the expectation

$$
E(E M S)=\sigma^{2}
$$

(b) Show that the corresponding mean regression sum of squares (RMS) has the expectation:

$$
\begin{aligned}
E(R M S)= & \sigma^{2}+\frac{1}{2}\left[\beta_{1}^{2} \sum_{i=1}^{n}\left(X_{i 1}-\bar{X}_{1}\right)^{2}+\beta_{2}^{2} \sum_{i=1}^{n}\left(X_{i 2}-\bar{X}_{2}\right)^{2}\right. \\
& \left.+2 \beta_{1} \beta_{2} \sum_{i=1}^{n}\left(X_{i 1}-\bar{X}_{1}\right)\left(X_{i 2}-\bar{X}_{2}\right)\right] .
\end{aligned}
$$

(c) Prove that $F=R M S / E M S \sim F_{2, n-3}$ under $H_{0}: \beta_{1}=\beta_{2}=0$.
5. Consider the linear model $Y=X \beta+\epsilon$, where ϵ follows a multivariate normal distribution with 0 mean and diagonal variance-covariance matrix $\Sigma=\operatorname{diag}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}\right)$. The vector of weighted-least-squares (WLS) estimates $\hat{\beta}_{w}$ can be written as:

$$
\hat{\beta}_{w}=\left(X^{\prime} W X\right)^{-1} X^{\prime} W Y,
$$

where Y is the vector of observed values and X is the usual model matrix (including a column of 1 's) and W is a diagonal matrix with diagonal elements $w_{1}, w_{2}, \ldots, w_{n}$.
(a) Suppose there is only one predictor variable X, derive the explicit formulas for $\hat{\beta}_{w 0}$ and $\hat{\beta}_{w 1}$.
(b) If $w_{i}=1 / \sigma_{i}^{2}$ and σ_{i}^{2} are proportional to X_{i}. Simplify your expressions for $\hat{\beta}_{w 0}$ and $\hat{\beta}_{w 1}$ as much as you can.
6. Consider the multiple linear regression model

$$
Y=X \beta+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2} I\right)
$$

Assume that σ^{2} is unknown. The unknown vector β has dimension $p \times 1$ with $p=k+1$, and k is the number of covariates in the model. Consider following partionings:

$$
X=\left(X_{1}, X_{2}\right), \beta=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}\right)^{\prime}
$$

such that

$$
X \beta=X_{1} \beta_{1}+X_{2} \beta_{2}
$$

Consider the following models:

$$
\text { Model 1: } Y=X_{1} \beta_{1}+X_{2} \beta_{2}+\epsilon
$$

and

$$
\text { Model } 2: Y=X_{1} \beta_{1}+\epsilon
$$

Show that $R_{2}^{2} \leq R_{1}^{2}$, where R^{2} is the coefficient of determination.

