Qualifying Exam

1. (a) Suppose that $f(z)$ is an analytic function in a domain $D \subset \mathbb{C}$. Prove that the complex conjugate $\bar{f}(z)$ is not analytic in D unless f is a constant function in D.
(b) Suppose that $f(z)$ is entire and there exists a constant $M \in \mathbb{R}$ such that $\operatorname{Re} f(z) \leq M$ for all $z \in \mathbb{C}$. By applying Liouville's theorem to the function $g(z)=e^{f(z)}$, prove that $\bar{f}(z)$ is also entire.
2. (a) Suppose that $P_{m}(z)$ and $Q_{n}(z)$ are two polynomials of degrees m and n respectively and $n-m \geq 2$. Suppose further that the rational function $\frac{P_{m}(z)}{Q_{n}(z)}$ has no pole on the real axis. Prove that, the integral $\int_{-\infty}^{\infty} \frac{P_{m}(x)}{Q_{n}(x)} d x$ is $2 \pi i$ times the sum of the residues of $\frac{P_{m}(z)}{Q_{n}(z)}$ at its poles in the upper half plane.
(b) Apply the result in part (a), evaluate

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} d x
$$

3. Let $f(z)=e^{1 / z}$.
(a) Prove that $z=0$ is an essential singularity of function f.
(b) Find the Laurent series of f at $z=0$.
(c) Note that the coefficient of the term z^{k} in the Laurent series in part (b) is given by

$$
a_{k}=\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{1 / \eta}}{\eta^{k+1}} d \eta
$$

where γ is the unit circle $\{z:|z|=1\}$ followed in the positive (anticlockwise) direction. Use the parameterization $z(\theta)=e^{i \theta},-\pi \leq \theta \leq \pi$ for all $z \in \gamma$, show that

$$
a_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{\cos \theta} \cos (\sin \theta+k \theta) d \theta
$$

(d) Using results in parts (b) and (c), show that for all $n \in \mathbb{Z}, n \geq 0$,

$$
\frac{1}{\pi} \int_{0}^{\pi} e^{\cos \theta} \cos (\sin \theta-n \theta) d \theta=\frac{1}{n!}
$$

