Qualifying Exam

- 1. (a) Suppose that f(z) is an analytic function in a domain $D \subset \mathbb{C}$. Prove that the complex conjugate $\overline{f}(z)$ is not analytic in D unless f is a constant function in D.
 - (b) Suppose that f(z) is entire and there exists a constant $M \in \mathbb{R}$ such that $\operatorname{Re} f(z) \leq M$ for all $z \in \mathbb{C}$. By applying Liouville's theorem to the function $g(z) = e^{f(z)}$, prove that $\overline{f}(z)$ is also entire.
- 2. (a) Suppose that P_m(z) and Q_n(z) are two polynomials of degrees m and n respectively and n − m ≥ 2. Suppose further that the rational function P_m(z)/Q_n(z) has no pole on the real axis. Prove that, the integral ∫[∞]_{-∞} P_m(x)/Q_n(x) dx is 2πi times the sum of the residues of P_m(z)/Q_n(z) at its poles in the upper half plane.
 (b) Apply the result in part (a) evaluate
 - (b) Apply the result in part (a), evaluate

$$\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx.$$

- **3.** Let $f(z) = e^{1/z}$.
 - (a) Prove that z = 0 is an essential singularity of function f.
 - (b) Find the Laurent series of f at z = 0.
 - (c) Note that the coefficient of the term z^k in the Laurent series in part (b) is given by

$$a_k = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{1/\eta}}{\eta^{k+1}} \, d\eta,$$

where γ is the unit circle $\{z : |z| = 1\}$ followed in the positive (anticlockwise) direction. Use the parameterization $z(\theta) = e^{i\theta}, -\pi \leq \theta \leq \pi$ for all $z \in \gamma$, show that

$$a_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{\cos\theta} \cos(\sin\theta + k\theta) d\theta.$$

(d) Using results in parts (b) and (c), show that for all $n \in \mathbb{Z}$, $n \ge 0$,

$$\frac{1}{\pi} \int_0^{\pi} e^{\cos\theta} \cos(\sin\theta - n\theta) d\theta = \frac{1}{n!}.$$