Problems for Complex Analysis Qualifying Exam, Spring 2022

Problem 1 By integrating a suitable complex analytic function $f(z)$ around a suitable closed contour, and applying the Residue Theorem, evaluate

$$
I=\int_{0}^{\infty} \frac{1-\cos x}{x^{2}\left(1+x^{4}\right)} d x
$$

Problem 2 (Rouché's theorem)
(a) How many zeros does $F(z)=z^{5}+z^{4}+z^{3}+z+5$ have inside the unit disk?
(b) Let $f(z)=z^{n}$ and $g(z)=\sum_{k=0}^{n-1} a_{k} z^{k}, a_{k} \in \mathbb{C}$. Show that, for $|z|$ sufficiently large, $|f(z)|>|g(z)|$. Deduce that any polynomial of degree n having complex coefficients (with nonzero leading coefficient) has exactly n roots in \mathbb{C}, counted according to multiplicity. Can you provide a bound for the size of the largest root in terms of the a_{k} ?
Problem 3 (Transform methods). For the following problem you may assume that the Fourier Transform of $F(x)$ and its inverse are given by

$$
\hat{F}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(x) e^{i k x} d x, \quad F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{F}(k) e^{-i k x} d k
$$

that the Laplace Transform of $G(t)$ and its inverse are given by

$$
\bar{G}(s)=\int_{0}^{\infty} G(t) e^{-s t} d t, \quad G(t)=\frac{1}{2 \pi i} \lim _{R \rightarrow \infty} \int_{\sigma-i R}^{\sigma+i R} \bar{G}(s) e^{s t} d s
$$

provided $\sigma \in \mathbb{R}$ is chosen such that $\bar{G}(s)$ is complex analytic for $\Re(s)>\sigma$; and that, where the transforms exist, second derivatives transform as

$$
\begin{gathered}
\widehat{F_{x x}}(k)=-k^{2} \hat{F}(k) \quad \text { (Fourier Transform) } \\
\overline{G_{t t}}(s)=s^{2} \bar{G}(s)-s G(0)-G^{\prime}(0) \quad \text { (Laplace Transform). }
\end{gathered}
$$

Consider the wave equation on an unbounded domain, $-\infty<x<\infty$ and for positive times $t \geq 0$:

$$
u_{t t}=u_{x x}, \quad|u| \rightarrow 0 \text { as }|x| \rightarrow \infty, \quad u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x)
$$

(a) By taking the Laplace Transform followed by the Fourier Transform, show that

$$
\begin{equation*}
\hat{\bar{u}}(k, s)=\frac{s \hat{f}(k)+\hat{g}(k)}{s^{2}+k^{2}} \tag{*}
\end{equation*}
$$

(b) By inverting the Laplace Transform in (*), show that

$$
\hat{u}(k, t)=\hat{f}(k) \cos k t+\frac{\hat{g}(k)}{k} \sin k t
$$

(You may assume that the relevant contributions on the semicircular portion of the Bromwich contour go to zero as $R \rightarrow \infty$.)
(c) In the special case where $g(x)=0$, apply the Fourier inversion theorem to (\dagger) to show that

$$
u(x, t)=\frac{1}{2}(f(x-t)+f(x+t))
$$

Hint: Use the complex exponential representation for $\cos k t$ in (b).

