DOCTORAL QUALIFYING EXAM New Jersey Institute of Technology Department of Mathematical Sciences

Statistics Part B: Real Analysis and Statistical Inference

August 2020

The first three questions are about Real Analysis and the next three questions are about Statistical Inference.

- 1. Let (Ω, Σ, μ) be a σ -finite measure space and let $f : \Omega \to \mathbb{R}$ be a non-negative Σ -measurable function. For every set $A \in \Sigma$ define $\nu(A) := \int_A f(x) d\mu(x)$.
 - (a) State the defining properties of μ as a measure.
 - (b) Prove that ν is also a measure on Σ .
 - (c) Prove that if $g: \Omega \to \mathbb{R}$ is another measurable non-negative function, then

$$\int_{\Omega} g(x) \, d\nu(x) = \int_{\Omega} f(x) g(x) \, d\mu(x).$$

Hint: Use the level set definition of the Lebesgue integral and Fubini's theorem.

- 2. Let c > 0 and let $g : \mathbb{R}^+ \to \mathbb{R}$, where $\mathbb{R}^+ := (0, \infty) \subset \mathbb{R}$, be \mathcal{L}^1 -measurable.
 - (a) Use Hölder's inequality to prove that

$$\int_{\mathbb{R}^+} \frac{|g(t)|^3}{(c^2 + t^2)^{1/4}} \, dt \le C \|g\|_{L^4(\mathbb{R}^+)}^3,$$

where C > 0 is a constant that depends only on c. Give an explicit example of such a constant.

- (b) The result in part (a) implies that the integral in the left-hand side is finite, if $g \in L^4(\mathbb{R}^+)$. Does this statement still hold if $g \in L^2(\mathbb{R}^+)$? If $g \in L^{\infty}(\mathbb{R}^+)$? Either prove these statements or provide a counterexample.
- (c) Is the left-hand side of the inequality in part (a) finite for $g(t) = \frac{\sin t}{t^{5/4}}$? What about the right-hand side?
- 3. Show that |x| = xH(x) xH(-x) where H(x) indicates the Heaviside function. Then use this relation to compute the Fourier transform of |x|.

Hint: You may need to use $\mathcal{F}H(\omega) = \frac{\delta}{2} + \frac{1}{2\pi i} vp(1/x)$ where \mathcal{F} indicates the Fourier transform and vp the principal value.

4. Let X_1, \ldots, X_n be independent random variables with densities

$$f_{X_i}(x;\theta) = \frac{1}{2i\theta}, -i(\theta - 2) \le x \le i(\theta + 2),$$

 $f_{X_i}(x;\theta) = 0$, elsewhere, $0 < \theta < \infty, i = 1, 2, ..., n$, respectively.

(a) Find the maximum likelihood estimator (MLE) of θ .

- (b) Also, find the MLE of $Var | \frac{X_i}{i} 2 |$, where $| \cdot |$ is the absolute value function.
- (c) State and prove at least one property of the MLE of θ .
- 5. Suppose that the *m*-dimensional random vector X_n has a $N_m(\mu, \Sigma_n)$ distribution, i.e. multivariate normal with mean μ and variance-covariance matrix Σ_n , which is positive definite, $n = 1, 2, \ldots$ Also suppose that the matrix Σ_n converges to the matrix Σ , which is positive definite. Find the limiting distribution of $Y_n = (X_n - \mu)' \Sigma^{-1} (X_n - \mu)$ as n goes to ∞ .
- 6. Let $X_i, i = 1, 2, ..., n$ be a random sample from $N(\theta_1, \theta_2)$, where $\theta_2 > 0$ is variance of the normal random variable and θ_1 , is the unspecified mean. Derive the likelihood ratio test of size α for testing $H_0: \theta_2 = \theta'_2$ versus $H_1: \theta_2 \neq \theta'_2$, where $\theta'_2 > 0$ is a specified value.