Doctoral Qualifying Exam
 New Jersey Institute of Technology
 Department of Mathematical Sciences

Applied Math Part C: Linear Algebra and Numerical Methods
August 2020

The first three questions are about Linear Algebra and the next three questions are about Numerical Methods.

1. Given the matrix

$$
A=\left(\begin{array}{cc}
0 & 3 \\
-2 & 5
\end{array}\right)
$$

and the vector

$$
x=\binom{1}{0}
$$

compute

$$
\lim _{n \rightarrow \infty} \frac{\left\|A^{n+2} x\right\|}{\left\|A^{n} x\right\|} \text { and } \lim _{n \rightarrow \infty} \frac{\left\|A^{-(n+2)} x\right\|}{\left\|A^{-n} x\right\|}
$$

2. Let $*$ denote the conjugate transpose. Hermitian matrices satisfy that $A^{*}=A$, unitary matrices satisfy that $A^{*} A=I$, and normal matrices satisfy that $A^{*} A=A A^{*}$. Prove the following
(a) The eigenvalues of a Hermitian matrix are real.
(b) The eigenvectors of a Hermitian matrix for distinct eigenvalues are orthogonal.
(c) The eigenvalues of a unitary matrix have modulus 1 .
(d) For u a unit vector, the matrix $A=I-2 u u^{*}$ is unitary.
(e) Let u and A be as in part (d), with $u \in \mathbb{C}^{n}$ and $A \in \mathbb{C}^{n \times n}$ for some $n>1$. The eigenvalues of A are -1 and 1 .
3. Let $*$ denote the adjoint of an operator. Normal operators satisfy that $T^{*} T=T T^{*}$.
(a) If W is the kernel (nullspace) of a normal transformation T, then $T^{*}(W) \subset W$.
(b) Let $T=\frac{d}{d x}: V \rightarrow V$ be the differentiation operator acting on the space V of degree-1 polynomials in the basis

$$
\{x-1, x+1\}
$$

Find the matrices associated with operators T and T^{*} in this basis, and show that the matrix associated with T is not normal.
(c) With T and V as in part (b), what are the eigenvalues of T acting on V ?
(d) With T and V as in part (b), is there any basis for V in which T is normal? Explain.
4. (a) Prove that the fixed point iteration

$$
x_{i+1}=x_{i}^{2}-2
$$

converges to 2 only if $x_{n}=2$ for some finite $n \in \mathbb{Z}$.
(b) Consider instead the fixed point iteration

$$
x_{i+1}=c\left(x_{i}^{2}-2\right) .
$$

Which values of $c \in \mathbb{R}$ ensure that this converges to a fixed point given a sufficiently good initial guess x_{0} ?
5. Let $h>0$ and suppose $f \in C^{3}$ on $[-h, h]$.
(a) Derive a quadrature formula for approximating the integral

$$
\int_{0}^{h} f(x) d x
$$

that makes use of the values of $f(-h), f(0)$, and $f(h)$.
(b) Derive an error estimate for your quadrature formula.

Hint: Make use of the error formula for nth degree polynomial interpolation

$$
f(x)-p_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(\xi(x))\left(x-x_{0}\right) \cdots\left(x-x_{n}\right) .
$$

6. Consider the numerical solution of the initial value problem

$$
y^{\prime}(t)=f(t, y(t)), \quad y(0)=y_{0}
$$

using the implicit two-step method

$$
y_{n+1}=2 y_{n}-y_{n-1}+\frac{h}{2}\left(f\left(t_{n+1}, y_{n+1}\right)-f\left(t_{n-1}, y_{n-1}\right)\right)
$$

with the exact starting values y_{0}, y_{1}.
(a) Determine the leading term in the local truncation error. What is the order of the method?
(b) Is this a convergent method? Explain.

