Doctoral Qualifying Exam
 New Jersey Institute of Technology
 Department of Mathematical Sciences

Applied Math Part B: Real and Complex Analysis
August 2020

The first three questions are about Real Analysis and the next three questions are about Complex Analysis.

1. Let (Ω, Σ, μ) be a σ-finite measure space and let $f: \Omega \rightarrow \mathbb{R}$ be a non-negative Σ-measurable function. For every set $A \in \Sigma$ define $\nu(A):=\int_{A} f(x) d \mu(x)$.
(a) State the defining properties of μ as a measure.
(b) Prove that ν is also a measure on Σ.
(c) Prove that if $g: \Omega \rightarrow \mathbb{R}$ is another measurable non-negative function, then

$$
\int_{\Omega} g(x) d \nu(x)=\int_{\Omega} f(x) g(x) d \mu(x)
$$

Hint: Use the level set definition of the Lebesgue integral and Fubini's theorem.
2. Let $c>0$ and let $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$, where $\mathbb{R}^{+}:=(0, \infty) \subset \mathbb{R}$, be \mathcal{L}^{1}-measurable.
(a) Use Hölder's inequality to prove that

$$
\int_{\mathbb{R}^{+}} \frac{|g(t)|^{3}}{\left(c^{2}+t^{2}\right)^{1 / 4}} d t \leq C\|g\|_{L^{4}\left(\mathbb{R}^{+}\right)}^{3}
$$

where $C>0$ is a constant that depends only on c. Give an explicit example of such a constant.
(b) The result in part (a) implies that the integral in the left-hand side is finite, if $g \in L^{4}\left(\mathbb{R}^{+}\right)$. Does this statement still hold if $g \in L^{2}\left(\mathbb{R}^{+}\right)$? If $g \in L^{\infty}\left(\mathbb{R}^{+}\right)$? Either prove these statements or provide a counterexample.
(c) Is the left-hand side of the inequality in part (a) finite for $g(t)=\frac{\sin t}{t^{5 / 4}}$? What about the right-hand side?
3. Show that $|x|=x H(x)-x H(-x)$ where $H(x)$ indicates the Heaviside function. Then use this relation to compute the Fourier transform of $|x|$.
Hint: You may need to use $\mathcal{F} H(\omega)=\frac{\delta}{2}+\frac{1}{2 \pi i} v p(1 / x)$ where \mathcal{F} indicates the Fourier transform and $v p$ the principal value.
4. Consider the following problems for the complex plane $\mathbb{C}:=\{z=x+i y: x, y \in \mathbb{R}\}$:
(a) Sketch the subset $S:=\{z \in \mathbb{C}:|z-\bar{z}|>2\}$ and determine whether or not it is (i) open, (ii) connected or (iii) bounded.
(b) Use the Cauchy-Riemann equations to show that the function

$$
f(z):=\log |z|+i \arg z=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{y}{x}\right)
$$

is analytic for $0<|z|$ and $|\arg z|<\pi$ and determine its derivative.
5. (a) Consider the function $F(z):=\frac{1}{z(z-1)}$, which is meromorphic on the entire complex plane. Show that $\int_{C} F(z) d z=0$, for C the circle defined by $|z|=2$ with the usual counterclockwise orientation, in two ways: (i) direct use of the Residue Theorem; and (ii) using the Zero-Pole Theorem, which requires that you find a function f satisfying $f^{\prime} / f=F$.
(b) Prove that if g is entire and satisfies $|g(z)| \leq M|z|^{n}$ for some positive constant M and $|z|$ sufficiently large, then it must be a polynomial of degree $d \leq n$.
(c) What can one say about an entire function h that is zero for all points of the following sequences: (i) $\left\{z_{n}=1 / n: n \in \mathbb{N}\right\}$ or (ii) $\left\{z_{n}=n: n \in \mathbb{N}\right\}$, where \mathbb{N} denotes the natural numbers (or positive integers). For (ii) also consider the Casorati-Weierstrass Theorem.
6. Consider the following problems related to the maximum and argument principles.
(a) Determine the maximum and minimum moduli of $e^{z^{2}}$ on the closed unit disk $D:=\{z \in \mathbb{C}:|z| \leq$ $1\}$.
(b) Prove that the number of zeros of $f(z):=3 z^{n}-e^{z^{2}}$ in D is equal (counting multiplicity) to n for any positive integer n.

