Doctoral Qualifying Exam
 New Jersey Institute of Technology
 Department of Mathematical Sciences

These three questions are based on Math 651.

1. (a) Find the general solution to the ODE $t^{2} u_{t t}+2 t u_{t}=\log (t)$ for $t>1$ with $u(1)=0=u_{t}(1)$. Simplify your answer.
(b) Consider the first order PDE $u_{t}+4 u_{x}=1$ with $u(x, 0)=\operatorname{atan}(x)$. Use the method of characteristics to solve it and simplify the explicit form of $u(x, t)$. Explain your steps and verify the solution.
2. Consider the system $x_{t}=1-x y$ and $y_{t}=(x-1) y$.
(a) Is the system Hamiltonian? If so, find the Hamiltonian. If not, explain why.
(b) Find the fixed points and determine their nature. Indicate any stable or unstable directions.
(c) Find the nullclines.
(d) Draw the phase portrait where fixed points, trajectories, nullclines, stable and unstable directions are clearly indicated.
3. Suppose that for $0<x<1$

$$
u_{t}=u_{x x}+e^{t}
$$

subject to boundary conditions $u(0, t)=0=u(1, t)$, and initial condition $u(x, 0)=x(1-x)$. Find $u(x, t)$ and explain all the steps.

