Suggested Analysis Qualifer Questions May 2023

1. (a) Let $X = \mathbf{N}$, \mathbf{X} be the σ -algebra of all subsets of X, and μ the counting measure. Let f be a non-negative measureable function. Show that

$$\int_X f \ d\mu = \sum_{n=1}^{\infty} f(n)$$

(b) Let (X, \mathbf{X}, μ) be a finite measure space. If f is a measureable function let

$$r(f) = \int_X \frac{|f|}{1+|f|} d\mu$$

Show that a sequence of measureable functions $\{f_n\}$ converges in measure if and only if $r(f_n - f) \to 0$.

2. Let $f : [-\pi, \pi] \to \mathbf{R}$ be differentiable on $(-\pi, \pi)$ such that $f(\pi) = f(-\pi)$. Let the Fourier series of f be given by

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$

- (a) Use integration by parts to compute the Fourier coefficients for f'(x).
- (b) Prove that the Fourier series converges pointwise to f(x). Is the convergence also uniform?
- (c) Consider the function $f(x) = x \sin \frac{1}{x} dx$ with f(0) = 0. Show that it fails to satisfy the assumptions of the problem at x = 0, but by appling Dini's Theorem, convergence of the Fourier Series can still be obtained. As a reminder, Dini's Theorem states that if g(t) = (f(x+t) + f(x-t))/2 on $t \in [0, \delta]$, if s(x) = g(0+) exists and if $(g(t) - s(x))/t \in L[0, \delta]$ for some $\delta < \pi$, then the Fourier series generated by f converges to s(x).
- 3. Let $f: S \to S$ be a function from a complete metric space (S, ρ) into itself. Assume there is a sequence $\{\alpha_n\}$ which converges to 0 such that $\rho(f^n(x), f^n(y)) \leq \alpha_n \rho(x, y)$ for all $n \geq 1$ and all $x, y \in S$, where f^n is the *n*th iterate of f; that is $f^1(x) = f(x)$ and $f^{n+1}(x) = f(f^n(x))$. Prove the f has a unique fixed point.