DOCTORAL QUALIFYING EXAM Department of Mathematical Sciences New Jersey Institute of Technology

Applied Math Part B: Real and Complex Analysis

August 2018

The first three questions are about Real Analysis and the next three questions are about Complex Analysis.

1. Let $f \in L^1(\mathbb{R})$ and let $g : \mathbb{R} \to \mathbb{R}$ be defined as

$$g(x) := \int_{\mathbb{R}} \frac{f(y)}{1 + (x - y)^2} \, dy.$$

(a) Prove that g(x) is differentiable at x = 0 and that

$$g'(0) = \int_{\mathbb{R}} \frac{2yf(y)}{(1+y^2)^2} \, dy.$$

(*Hint:* apply the definition of the derivative and Lebesgue dominated convergence theorem.)

- (b) Verify the formula in (a) for $f(x) = \chi_{(0,R)}(x)$, where χ is the characteristic function and R > 0 is fixed, by explicitly computing g(x) and differentiating it at x = 0.
- (c) Is the right-hand side of the formula defining g(x) well-defined as a Lebesgue integral for $f \in C_c^{\infty}(\mathbb{R})$? For $f \in C^{\infty}(\mathbb{R})$? Either prove your statement or provide a counter-example.
- 2. Let $F: C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ be defined as

$$F(u) := -\int_{\mathbb{R}} \int_{\mathbb{R}} u(x)u(y) |x-y| \, dx \, dy.$$

(a) Show that if $v \in C_c^{\infty}(\mathbb{R})$, then

$$F(v') = 2 \int_{\mathbb{R}} |v(x)|^2 dx,$$

where v' = dv/dx. (*Hint:* integrate by parts.)

(b) If \hat{u} is the Fourier transform of $u \in C_c^{\infty}(\mathbb{R})$ defined by $\hat{u}(k) := \int_{\mathbb{R}} e^{-2\pi i k x} u(x) dx$, and u satisfies $\int_{\mathbb{R}} u(x) dx = 0$, show that

$$F(u) = \int_{\mathbb{R}} \frac{|\widehat{u}(k)|^2}{2\pi^2 k^2} dk.$$

(*Hint:* use the formula for the Fourier transform of the derivative.)

- (c) Show that the formula in part (b) may no longer be true, if $\int_{\mathbb{R}} u(x) dx \neq 0$.
- 3. Let $\langle \cdot, \cdot \rangle : C_c^{\infty}(\mathbb{R}) \times C_c^{\infty}(\mathbb{R}) \to \mathbb{R}$ be defined as

$$\langle f,g \rangle := -\int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(y) |x-y| \, dx \, dy.$$

- (a) State the defining properties of an inner product.
- (b) Show that the function $\langle \cdot, \cdot \rangle$ above defines an inner product over functions in $C_c^{\infty}(\mathbb{R})$ that integrate to zero over \mathbb{R} .
- (c) Show that $\langle \cdot, \cdot \rangle$ may be continuously extended to functions in $L^2(\mathbb{R})$ that integrate to zero over \mathbb{R} and vanish outside a compact set, i.e., if $f_n, g_m \in C_c^{\infty}(\mathbb{R})$ such that $\int_{\mathbb{R}} f_n(x) dx = \int_{\mathbb{R}} g_m(x) dx = 0$ and $\operatorname{supp}(f_n) \cup \operatorname{supp}(g_m) \subset K$ for some compact set $K \subset \mathbb{R}$ and all $n, m \in \mathbb{N}$, and

$$f_n \stackrel{L^2(\mathbb{R})}{\longrightarrow} f, \qquad g_m \stackrel{L^2(\mathbb{R})}{\longrightarrow} g \qquad \text{as } n, m \to \infty,$$

then

$$\langle f,g\rangle := \lim_{n,m\to\infty} \langle f_n,g_m\rangle = -\int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(y) |x-y| \, dx \, dy,$$

and $\langle \cdot, \cdot \rangle$ still defines an inner product.

4. (a) Prove the isolated zero theorem; namely, if f is a nonconstant analytic function in a domain $D \subset \mathbb{C}$, then if $f(z_0) = 0$ for $z_0 \in D$, there exists an $\epsilon > 0$ such that f is not zero for any point of the punctured neighborhood $\mathcal{P}_{\epsilon}(z_0) := \{z \in \mathbb{C} : 0 < |z - z_0| < \epsilon\}$. *Hint: A good starting point is the series representation*

$$f(z) = a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$$

(b) Consider the sequence of polynomials

$$\{p_n(z)\} := \left\{ z \prod_{k=2}^{n+1} (1 - k^2 z^2) = z(1 - 2^2 z^2)(1 - 3^2 z^2) \cdots (1 - (n+1)^2 z^2) \right\}.$$

Show using (a) that if this sequence converges uniformly to a function p on the unit disk $B := \{z \in \mathbb{C} : |z| \le 1\}$, then p must be identically zero. *Hint: Recall the theorem about the nature of such a limit, and note the resulting zeros of the function.*

5. Let the complex-valued function φ be analytic on the upper half-plane $H_+ := \{z = x + iy \in \mathbb{C} : y \ge 0\}$. Use residue theory and a semicircular contour and a semicircular contour indented at z to show that if $\alpha < 0$ and $|\varphi(z)| \le M |z|^{\alpha}$ for all $z \in H_+$, where M is a positive constant, then one has the formula (related to the Hilbert transform)

$$\int_{-\infty}^{\infty} \frac{\varphi(\zeta) d\zeta}{\zeta - z} = \begin{cases} 2\pi i \varphi(z), & z = x + iy \text{ with } y > 0\\ \pi i \varphi(z), & z = x + iy \text{ with } y = 0 \end{cases}$$

- 6. Consider the following problems related to the principle of the argument and its associated results such as Rouché's theorem and the zero-pole theorem and its variants.
 - (a) Show that if f is analytic on the unit disk $B := \{z \in \mathbb{C} : |z| \le 1\}$ and |f(z)| < 1 for every z on the unit circle $\partial B := \{z \in \mathbb{C} : |z| = 1\}$, f has a unique fixed point in the interior of the disk; i.e., $f(z_*) = z_*$ for precisely one point with $|z_*| < 1$.

- (b) If f is the same as in (a), what can be said about solutions of $z^m = f(z)$ in B, for any integer $m \ge 2$?
- (c) Let $\Phi_n(z) := z \prod_{k=2}^{n+1} (1 k^2 z^2)$ for any positive integer *n*. Show, preferably without any lengthy computation, that

$$\frac{1}{2\pi i} \int_{\partial B} \frac{\Phi'_n(z)dz}{\Phi_n(z)} = 1 + 2n.$$

(d) Similarly, show that

$$\frac{1}{2\pi i} \int_{\partial B} \frac{z \Phi_n'(z) dz}{\Phi_n(z)} = 0.$$