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Applied Math Part B: Real and Complex Analysis August 2018

The first three questions are about Real Analysis and the next three questions are about

Complex Analysis.

1. Let f ∈ L1(R) and let g : R→ R be defined as

g(x) :=

∫
R

f(y)

1 + (x− y)2
dy.

(a) Prove that g(x) is differentiable at x = 0 and that

g′(0) =

∫
R

2yf(y)

(1 + y2)2
dy.

(Hint: apply the definition of the derivative and Lebesgue dominated convergence theorem.)

(b) Verify the formula in (a) for f(x) = χ(0,R)(x), where χ is the characteristic function and

R > 0 is fixed, by explicitly computing g(x) and differentiating it at x = 0.

(c) Is the right-hand side of the formula defining g(x) well-defined as a Lebesgue integral for

f ∈ C∞c (R)? For f ∈ C∞(R)? Either prove your statement or provide a counter-example.

2. Let F : C∞c (R)→ R be defined as

F (u) := −
∫
R

∫
R
u(x)u(y) |x− y| dx dy.

(a) Show that if v ∈ C∞c (R), then

F (v′) = 2

∫
R
|v(x)|2dx,

where v′ = dv/dx. (Hint: integrate by parts.)

(b) If û is the Fourier transform of u ∈ C∞c (R) defined by û(k) :=
∫
R e
−2πikxu(x) dx, and u

satisfies
∫
R u(x)dx = 0, show that

F (u) =

∫
R

|û(k)|2

2π2k2
dk.

(Hint: use the formula for the Fourier transform of the derivative.)

(c) Show that the formula in part (b) may no longer be true, if
∫
R u(x)dx 6= 0.

3. Let 〈·, ·〉 : C∞c (R)× C∞c (R)→ R be defined as

〈f, g〉 := −
∫
R

∫
R
f(x)g(y) |x− y| dx dy.



(a) State the defining properties of an inner product.

(b) Show that the function 〈·, ·〉 above defines an inner product over functions in C∞c (R) that

integrate to zero over R.

(c) Show that 〈·, ·〉 may be continuously extended to functions in L2(R) that integrate to zero

over R and vanish outside a compact set, i.e., if fn, gm ∈ C∞c (R) such that
∫
R fn(x)dx =∫

R gm(x)dx = 0 and supp(fn) ∪ supp(gm) ⊂ K for some compact set K ⊂ R and all

n,m ∈ N, and

fn
L2(R)−→ f, gm

L2(R)−→ g as n,m→∞,

then

〈f, g〉 := lim
n,m→∞

〈fn, gm〉 = −
∫
R

∫
R
f(x)g(y) |x− y| dx dy,

and 〈·, ·〉 still defines an inner product.

4. (a) Prove the isolated zero theorem; namely, if f is a nonconstant analytic function in a domain

D ⊂ C, then if f(z0) = 0 for z0 ∈ D, there exists an ε > 0 such that f is not zero for any

point of the punctured neighborhood Pε(z0) := {z ∈ C : 0 < |z − z0| < ε}. Hint: A good

starting point is the series representation

f(z) = a1(z − z0) + a2(z − z0)2 + · · ·

(b) Consider the sequence of polynomials

{pn(z)} :=
{
z
∏n+1
k=2(1− k2z2) = z(1− 22z2)(1− 32z2) · · · (1− (n+ 1)2z2)

}
.

Show using (a) that if this sequence converges uniformly to a function p on the unit disk

B := {z ∈ C : |z| ≤ 1}, then p must be identically zero. Hint: Recall the theorem about the

nature of such a limit, and note the resulting zeros of the function.

5. Let the complex-valued function ϕ be analytic on the upper half-plane H+ := {z = x+ iy ∈ C :

y ≥ 0}. Use residue theory and a semicircular contour and a semicircular contour indented at z

to show that if α < 0 and |ϕ(z)| ≤ M |z|α for all z ∈ H+, where M is a positive constant, then

one has the formula (related to the Hilbert transform)∫ ∞
−∞

ϕ(ζ)dζ

ζ − z
=

{
2πiϕ(z), z = x+ iy with y > 0
πiϕ(z), z = x+ iy with y = 0

6. Consider the following problems related to the principle of the argument and its associated

results such as Rouché’s theorem and the zero-pole theorem and its variants.

(a) Show that if f is analytic on the unit disk B := {z ∈ C : |z| ≤ 1} and |f(z)| < 1 for every

z on the unit circle ∂B := {z ∈ C : |z| = 1}, f has a unique fixed point in the interior of

the disk; i.e., f(z∗) = z∗ for precisely one point with |z∗| < 1.



(b) If f is the same as in (a), what can be said about solutions of zm = f(z) in B, for any

integer m ≥ 2?

(c) Let Φn(z) := z
∏n+1
k=2(1 − k2z2) for any positive integer n. Show, preferably without any

lengthy computation, that
1

2πi

∫
∂B

Φ′n(z)dz

Φn(z)
= 1 + 2n.

(d) Similarly, show that
1

2πi

∫
∂B

zΦ′n(z)dz

Φn(z)
= 0.


