DOCTORAL QUALIFYING EXAM Department of Mathematical Sciences New Jersey Institute of Technology

Applied Math Part C: Linear Algebra and Numerical Methods

The first three questions are about Linear Algebra and the next three questions are about Numerical Methods.

- 1. (a) Let A be any $n \times n$ matrix. Determine whether matrices A and A + I are similar.
 - (b) Let A be an invertible $n \times n$ matrix. Then show that $cond_2(A) = 1$ if and only if A is a multiple of a unitary matrix U, where $cond_2$ is the condition number with respect to the 2-norm.
- 2. (a) Let $\mathbf{x} = c_1 \mathbf{u}_1 + \ldots + c_n \mathbf{u}_n$, where \mathbf{u}_i , $i = 1, \ldots, n$, form a basis for the vector space in which \mathbf{x} lies. Prove that c_1, \ldots, c_n are unique.
 - (b) Let L be the set of vectors $\mathbf{x} = [x_1 \ x_2 \ x_3 \ x_4]^T$ in \mathbb{R}^4 for which $x_1 + x_2 + x_3 + x_4 = 0$. Find a basis for L. What is the dimension of L?
- 3. Let:

$$y_1' = 5y_1 - 6y_2$$
$$y_2' = 3y_1 - 4y_2.$$

Find the solution to the system that satisfies $y_1(0) = 4$, $y_2(0) = 1$.

- 4. (a) Will Newton's method converge quadratically to a root of $g(x) = x^2$? Fully justify your answer.
 - (b) Suppose f(x) has three continuous derivatives and suppose q(x) is a polynomial of degree two that interpolates f at the nodes x_0, x_1, x_2 , with $x_0 < x_1 < x_2$. Let $h = \max\{(x_1 - x_0), (x_2 - x_1)\}$ and $K = \max_{x \in [x_0, x_2]} |f'''(x)|$. Show that

$$\max_{\in [x_0, x_2]} |f''(x) - q''(x)| = Ch^{\alpha},$$

by finding constants α and C = C(K) > 0. (Hint: Use the Newton form of the interpolating polynomial to show that there is a number $\eta \in [x_0, x_2]$ with $f''(\eta) - q''(\eta) = 0$. Then, integrate f'''.)

5. Consider the following scheme for solving the differential equation y' = f(t, y):

x

$$y_{n+1} = y_n + \frac{h}{2}(y'_n + y'_{n+1}) + \frac{h^2}{12}(y''_n - y''_{n+1}),$$

where $y'_{n} = f(t_{n}, y_{n})$ and $y''_{n} = f_{t}(t_{n}, y_{n}) + f_{y}(t_{n}, y_{n})f(t_{n}, y_{n}).$

(a) Find the order of the scheme.

- (b) Show that the region of stability contains the negative real axis \mathbb{R}^- .
- 6. Suppose that w(x) is a weight function on [a, b] and $\{p_k(x)\}_{k=0}^n$ is a family of orthogonal polynomials with respect to the inner product

$$(f,g) = \int_{a}^{b} f(x)g(x)w(x)dx.$$

Let $x_j, j = 1, ..., n$ be the roots of the polynomial $p_n(x)$, (note that orthogonality implies p_n has n simple roots contained in the interval (a, b)). Consider the quadrature formula given by

$$I(f) = \int_a^b f(x)w(x)dx \simeq Q(f) = \sum_{j=1}^n w_j f(x_j),$$

where

$$w_j = \int_a^b l_j(x)w(x)dx, \qquad l_j(x) = \prod_{i=1,\dots,n, i \neq j} \frac{(x-x_j)}{(x_i - x_j)}.$$

(a) Show that the degree of precision of the quadrature formula is less than or equal to 2n-1.

(b) Show that the degree of precision of the quadrature formula can be no more than 2n-1.