DOCTORAL QUALIFYING EXAM Department of Mathematical Sciences New Jersey Institute of Technology

Applied Math Part B: Real Analysis

August 2017

The following three questions are about Real Analysis.

1. Use the definition of the Lebesgue integral in terms of level sets to compute

$$\int_{\mathbb{R}^2} e^{-|x|^2} dx.$$
 (1)

Then verify your answer, using the usual integration in polar coordinates.

2. Let p > 1 and let $F_p : L^p(\mathbb{R}) \to \mathbb{R}$ be defined by

$$F_p(f) := \sup_{\|g\|_q \le 1} \int_{\mathbb{R}} f(x)g(x) \, dx, \tag{2}$$

where the supremum is taken over $g \in L^q(\mathbb{R})$ with q = p/(p-1).

- (a) State the definition of a norm on a vector space X.
- (b) Show that F_p defines a norm on $L^p(\mathbb{R})$.
- (c) Show that the supremum in (2) is attained and give an explicit expression for $F_p(f)$ in terms of f alone.
- 3. Let a > 0 and b > 0 and let $f(x) := ae^{-a^2x^2}$ and $g(x) := be^{-b^2x^2}$, with $x \in \mathbb{R}$.
 - (a) Use the definition of the convolution integral to calculate h = f * g. Verify that f * g = g * f.
 - (b) Now use Fourier transform to compute h and verify that the answer agrees with the one in part (a).
 - (c) What happens with the answer in part (a) when $a \to \infty$? Can the assumptions of the Lebesgue dominated convergence theorem be satisfied in the definition of h(x) as $a \to \infty$?