DEPARTMENT OF MATHEMATICAL SCIENCES New Jersey Institute of Technology

Part A: Applied Mathematics

DOCTORAL QUALIFYING EXAM, MAY 2018

The first three questions are based on Math 613 and the next three questions are about Math 651.

1. Consider the heat flow in a one-dimensional rod, $0 \le x \le 2$, of constant cross-sectional area, composed of two different materials, of equal size, with a different physical properties, in a perfect thermal contact; i.e. the temperature is continuous and no heat loss at where two materials join. Consider a heat source for 0 < x < 1. A constant temperature of T_0 is imposed at x = 0 and a constant temperature of T_1 is imposed at x = 2 with an initial temperature distribution f(x).

(a) State the most general set of partial differential equations along with the corresponding boundary conditions to describe the problem.

(b) Consider that for 0 < x < 1, all the material properties are constant and 1 with the source term also to be 1, whereas for 1 < x < 2, all the material properties are constant and 2. Determine the equilibrium temperature with $T_0 = T_1 = 0$.

2. Consider the initial value problem

$$\frac{d^2y}{dt^2} + 2\epsilon \frac{dy}{dt} + y = 0, \quad t \ge 0, \quad y(0) = 0, \quad \frac{dy(0)}{dt} = 1,$$

where $< \epsilon \ll 1$.

(a) Find the exact solution.

(b) Use the straightforward asymptotic expansion to approximate the solution, keeping all $O(\epsilon)$ terms. Discuss the validity of the approximated solution.

(c) Use a two-time scale asymptotic expansion to find a better approximation of the solution. Hint: choose the two time variables based on the exact solution.

3. Consider the arclength functional

$$J(y(x)) = \int_{a}^{b} \sqrt{1 + (y'(x))^{2}} dx,$$

where y(x) is twice continuously differentiable for $x \in [a, b]$, and $y(a) = y_a$ and $y(b) = y_b$. Find the unique extremal of the functional J.

4. Consider the hypergeometric equation

$$x(1-x)y'' + \left[\gamma - (1+\alpha+\beta)x\right]y' - \alpha\beta y = 0,$$

where α , β , and γ are constants.

(a) Assume that $1 - \gamma$ is not a positive integer, show that, in the neighborhood of x = 0, one solution is

$$y_1(x) = 1 + \frac{\alpha\beta}{\gamma \cdot 1!}x + \frac{\alpha(\alpha+1)\beta(\beta+1)}{\gamma(\gamma+1)2!}x^2 + \cdots$$

Do you expect the radius of convergence of this series to be smaller, equal to or larger than 1?

(b) Show that a second solution for 0 < x < 1 is

$$y_2(x) = x^{1-\gamma} \left[1 + \frac{(\alpha - \gamma_1)(\beta - \gamma + 1)}{(2 - \gamma)!} x + \frac{(\alpha - \gamma + 1)(\alpha - \gamma + 2)(\beta - \gamma + 1)(\beta - \gamma + 2)}{(2 - \gamma)(3 - \gamma)!} x^2 + \cdots \right]$$

(c) By making the change of variable $\xi = 1/x$ to rewrite the hypergeometric equation in the new variable ξ , show that the point at infinity is a regular singular point and that the roots of the indicial equation are α and β .

5. Consider the system

$$\dot{x} = y^2 + xy - 2, \quad \dot{y} = x - y.$$

- (a) Find all fixed points of the system.
- (b) Determine the type and stability of each fixed point.
- (c) Sketch the phase portrait for this system.
- 6. Consider a fourth-order linear differential operator for $x \in (0, 1)$

$$L = \frac{d^4}{dx^4}.$$

(a) Show that L is self-adjoint if u and v are any two functions satisfying the boundary conditions

$$\phi(0) = 0, \quad \phi(1) = 0, \quad \frac{d\phi}{dx}(0) = 0, \quad \frac{d^2\phi}{dx^2}(1) = 0.$$

(b) For the eigenvalue problem using the boundary conditions in part (a):

$$\frac{d^4\phi}{dx^4} + \lambda e^x \phi = 0.$$

show that the eigenfunctions corresponding to different eigenvalues are orthogonal. Further, show that eigenvalues $\lambda \leq 0$. Is $\lambda = 0$ an eigenvalue? If yes, find the corresponding eigenfunction.

Useful Formulas

* Euler-Lagrange equation:

If y_1, \cdots, y_n provide a local minimum for the functional

$$J(y_1,\cdots,y_n) = \int_a^b L(x,y_1,\cdots,y_n,y_1',\cdots,y_n')dx$$

where $y_i \in C^2[a, b]$ and $y_i(a) = \alpha_i$ and $y_i(b) = \beta_i$, $i = 1, \dots, n$, then y_i must satisfy the Euler-Lagrange system of n ordinary differential equations

$$L_{y_i} - \frac{dL_{y'_i}}{dx} = 0, \quad i = 1, \cdots, n, \quad x \in [a, b].$$