Math 112 – Fall 2011 Final Examination

Please complete the following problems. All work must be shown in order to receive full credit. Answers without explanation will receive *no* credit. The use of books, notes, calculators, or any other external sources of information is not allowed during this examination.

1.(22 pts.) Consider the parametric curve that is given by $x(t) = \cos^2(t)$, $y(t) = \sin^2(t)$ for $0 \le t \le \frac{\pi}{4}$.

a. Find the length of this curve.

b. Find the area of the surface generated by revolving this curve about the *x*-axis.

2.(22 pts.) Consider the polar curve given by $r = 4\sin(\theta)$.

- **a.** Find the slope of the tangent line to this curve for $\theta = \frac{\pi}{3}$.
- **b.** Find the area enclosed by this curve.

3.(18 pts.) Evaluate the following integrals:

a.
$$\int \frac{4x+1}{x(x+1)^2} dx$$
 b. $\int \frac{1}{(4-x^2)^{\frac{3}{2}}} dx$

4.(18 pts.) Evaluate the following integrals:

a.
$$\int \frac{3x-1}{x^3+x} dx$$
 b.
$$\int \frac{\ln(x)}{\sqrt{x}} dx$$

5.(18 pts.) Evaluate the following improper integrals if they are convergent or show they are divergent:

a.
$$\int_0^1 \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$$
 b.
$$\int_0^\infty x e^{-x} dx$$

6.(16 pts.) Find the volume of the solid obtained by revolving the region enclosed by $y = \frac{1}{x^2 + 1}$, y = 0, x = 0 and x = 1 about the x-axis.

7.(26 pts.) Determine whether the following series are convergent or divergent. If you use a convergence or divergence test, please state which test you are using.

a.
$$\sum_{n=1}^{\infty} \frac{n+1}{\sqrt{n^4+4}}$$

b. $\sum_{n=1}^{\infty} \frac{1}{e^n+1}$
c. $\sum_{n=1}^{\infty} \frac{2^n+5^n}{4^n+5^n}$

8.(16 pts.) Find the radius of convergence and interval of convergence for $\sum_{n=1}^{\infty} \frac{3^n (x-1)^n}{n}$.

- **9.**(22 pts.) Consider the function $f(x) = x \cos(x^2)$.
 - **a.** Find the Maclaurin series (Taylor series about a = 0) for f(x).
 - **b.** Use the series from part **a** to evaluate the following: $\lim_{x \to 0} \frac{x \cos(x^2) x}{3x^5}$.

10.(22 pts.) Consider the function $f(x) = e^x$.

a. Find the first four nonzero terms of the Taylor series about a = 2 for f(x).

b. Suppose f(x) is approximated by the Taylor polynomial from part **a**. Estimate the error when $1 \le x \le 3$.