- 1. (a) (10 points) A particle traveling in a straight line is located at the point (1, -1, 2)and has speed 2 at time t = 0. The particle moves toward the point (3, 0, 3) with constant acceleration $2\mathbf{i} + \mathbf{j} + \mathbf{k}$. Find the particle's position vector $\mathbf{r}(t)$ at time t and the time that it takes to get to the point (3, 0, 3).
 - (b) (10 points) Let the trajectory of a projectile be given in parametric form as $x(t) = \cos t$, $y(t) = \sin t$, z(t) = t. Find the curve's unit tangent vector and the total length of the trajectory curve from t = 0 to $t = \pi$.
- 2. (a) (15 points) For the function $f(x, y) = \sqrt{y x^2 + 3}$, find and sketch the domain. Find an equation for and sketch the graph of the level curve of f(x, y) passing through (2, 5).
 - (b) (10 points) Find all the second order partial derivatives of $g(x, y) = xe^{xy} + x^2 3y$.
 - (c) (10 points) Find $\partial f/\partial r$ and $\partial f/\partial s$ for $f(x, y, z) = x^2 + y^2 + e^z$ where $x = r \sin s$, $y = r \cos s$, and z = rs by using the chain rule for partial derivatives.
- 3. (a) (10 points) Find the directional derivative of $f(x, y, z) = \cos(xy) + e^{yz} + \ln(zx)$ at $P_0(1, 0, 1)$ in the direction of $\mathbf{v} = <1, 2, 2>$. What are the directions for which f increases the most and decreases the most at P_0 ?
 - (b) (10 points) Write the equations for the tangent plane and the normal line to the level surface f = 2 at P_0 in part (a).
- 4. (a) (10 points) Let f(x, y) = x² + y² 2x 4y and the region R be bounded by y = x, y = 0 and x = 1. Find the absolute maximum and minimum values of f over R.
 - (b) (5 points) Suppose we know that $f_{xx}(x,y) = 6x$, $f_{xy}(x,y) = 6y$, $f_{yy}(x,y) = 6x + 6y$. Suppose we also know that points $(0,\sqrt{5}), (0, -\sqrt{5}), (2, 1), (-2, -1)$ are critical points of f(x, y). Classify each critical point.
 - (c) (10 points) Find the maximum and minimum values of the temperature T(x, y, z) = x 2y + 5z on the sphere $x^2 + y^2 + z^2 = 30$.