Math 111 – Fall 2014 Examination 1

Please complete the following problems. All work must be shown in order to receive full credit. Answers without explanation will receive *no* credit. The use of books, notes, calculators, or any other external sources of information is not allowed during this examination.

1.(10 pts.) Evaluate the following limits, allowing $+\infty$ and $-\infty$ as possible values of a limit. If the limit does not exist, explain why.

a.
$$\lim_{x \to 1} \left(\frac{1}{x+1} - \frac{1}{x^2+1} \right)$$
 b.
$$\lim_{x \to 0^-} \arctan\left(\frac{1}{x}\right)$$

2.(10 pts.) Evaluate the following limits, allowing $+\infty$ and $-\infty$ as possible values of a limit. If the limit does not exist, explain why.

a.
$$\lim_{x \to 2} \frac{x^2 - 4}{2 - \sqrt{x + 2}}$$
 b. $\lim_{x \to 0} \frac{\sin(3x)}{\tan(2x)}$

3.(10 pts.) Evaluate the following limits, allowing $+\infty$ and $-\infty$ as possible values of a limit. If the limit does not exist, explain why.

a.
$$\lim_{x \to 0} \frac{\sqrt{x+1}}{x - \sqrt{x^2 + 1}}$$
b.
$$\lim_{x \to \infty} \arcsin\left(e^{\frac{1}{x}}\right)$$

4.(10 pts.) Evaluate the following limits, allowing $+\infty$ and $-\infty$ as possible values of a limit. If the limit does not exist, explain why.

a.
$$\lim_{x \to 0^+} \frac{1}{1 - \cos(x)}$$
 b. $\lim_{x \to 1^+} \frac{|1 - x|}{x^2 - 4x + 3}$

5.(12 pts.) Use the definition of the derivative as the limit of a difference quotient to find the derivative of $f(x) = \frac{1}{x^2}$.

6.(20 pts.) Find all horizontal, vertical, and slant (oblique) asymptotes, if they exist, for the following functions. Be sure to clearly label the type of each of your asymptotes.

a.
$$y = \frac{x^2 - x}{x - 2}$$
 b. $y = \frac{2\sqrt[3]{x} + 1}{\sqrt[3]{x} + 2}$

7.(16 pts.) Find all points where each of the following functions is discontinuous and identify the type of discontinuity.

a.
$$y = \frac{1}{|x| - 1} + \frac{1}{|x| + 2}$$

b. $y = \frac{1}{|x - 1|} + \frac{1}{|x + 2|}$

8.(12 pts.) Find all points where f is discontinuous and identify the type of discontinuity.

$$f(x) = \begin{cases} 2 - x, & x \le 1\\ \frac{1}{\ln(x) - 1}, & x > 1 \end{cases}$$