Math 108 Exam #3 April 22, 2015

	Problem(s)	Score	Total
Time: 1 hour and 25 minutes			
Instructions: Show all work for full credit.			
Extra Space Use the backs of each sheet			
for extra space. Clearly label when doing so			
for extra space. Crearry raber when doing so.			
Name:			
ID #:			
Instructor/Section.			
"I pledge by my honor that I have abided by the			
NJIT Academic Integrity Code."			
(Signature			
1. Evaluate the following $f(x) = 2x^2 - 2x - 2$	and (a) and ((16).
1. Evaluate the following $f(x) = 2x - 2x - 2$	and $g(x) = x + 4$	(16 points)):
(c, c)(2)	(\cdot, \cdot, \cdot)		
a. $(f \circ f)(3)$	b. $(g \circ f)$		
c. $(f \circ g)(x)$	d. $g \circ g(x)$		

2. Find the inverse of the following functions: (10 points)

a)
$$f(x) = \frac{5+x}{3x+2}$$
 b) $h(x) = \sqrt{2x+3}, x \ge \frac{-3}{2}$

3. Use the given conditions to find the slope-intercept form of each non-vertical line.

a) Parallel to
$$y = \frac{2}{3}x - 5$$
 and passing through (4,7) (3 points)

b. Perpendicular to y = 5x + 3 and passing through the point (-3,-5) (3 points)

4. Graph (7 points)

$$y = 2(x-2)^2 + 1$$

5. Your wage is \$10 per hour plus \$0.75 for each unit produced per hour. So your hourly wage y in terms of the number of units produced x is y = 10+0.75x. (6 points)

a) Find the inverse of the function. What does each variable represent in the inverse function?

a)_____

b) Determine the number of units produced when your hourly wage is \$24.25.

6. Find the function that is finally graphed after each of the following transformations is applied to the graph of $y = \sqrt{x}$ in the order stated. Then graph the function.

- a) Shift up 1 units
- b) Shift left 4 units
- c) Reflect about the x-axis (8 points)

7. Find the line that passes through the points (-1,3) and (3,3). Be sure to put you answer in slope-intercept form. (7 points)

8. For
$$F(x) = x^2 - 4x + 7$$
 evaluate $\frac{f(x+h) - f(x)}{h}$. (8 points)

9. Graph the following function $f(x) = 2x^2 + 8x + 7$: (6 points)

10. (**10 points**)

1. For the graph of f(x) given below sketch *approximately* a graph of $f^{-1}(x)$ on the same set of axes.

11. (6 points) If $f(x) = \frac{x}{x+1}$, $g(x) = \frac{1}{x}$ find the domain of: (Note you do NOT need to do the combination of the two functions for full credit)

a) $f \circ g(x)$

b) $g \circ f(x)$ 11a)_____

11b) _____

12) (10 points) If $f(x) = \begin{cases} 2x+1 & \text{if } x < 0 \\ 2x+2 & \text{if } x \ge 0 \end{cases}$ find:

a) f(-1)

b) f(0)

c) f(2)

d) If f(x) = 3 then what does x = ?

e) Graph f(x)

