MATH 213 EXAM I -September 24, 2008

1) For the two intersecting lines $x - 2 = \frac{1}{2}(y + 1) = \frac{1}{3}(z - 3)$

and
$$\frac{1}{3}(x-5) = \frac{1}{2}(y-1) = z-4$$

- a)Determine the coordinates of the point where they intersect
- b)Determine the cosine of the angle between these two lines

2)a)Determine the equation of the plane formed by the two parallel lines

$$x = 1 + 2t, y = -t, z = -1 + t$$
 and $x = -4t, y = 1 + 2t, z = 2 - 2t$

- b)Determine the shortest distance between these two parallel lines
- 3) For the surface $x^2 = y^2 + z^2$
- a)Sketch and identify this surface
- b)Write this equation in spherical coordinates
- c) Show the location of the point, given in spherical coordinates as $(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2})$ on the sketch of this surface
- 4) For a particle moving along the space curve given by $\mathbf{r} = 2t\mathbf{i} + \frac{1}{t}\mathbf{j} + (t-1)^3\mathbf{k}$
- a)Evaluate $\frac{d^2 \mathbf{r}}{dt^2}$ at t = 1
- b)Determine the curvature at t = 1

5)For a particle moving in space

$$\frac{d^2\mathbf{r}}{dt^2} = 9\sin 3t\mathbf{i} + 9\cos 3t\mathbf{j} + 4\mathbf{k} \quad where \ \mathbf{r}(0) = 3\mathbf{i} + 4\mathbf{j} \text{ and } \frac{d\mathbf{r}(0)}{dt} = 2\mathbf{i} - 7\mathbf{k}$$

- a) Evaluate $\frac{d\mathbf{r}}{dt}$
- b)Determine its position vector, $\mathbf{r}(t)$