THE COLLEGE OF SCIENCE AND LIBERAL ARTS

MATH 105-103: Elementary Probability and Statistics Fall 2018 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

COURSE INFORMATION

Course Description: Consider notions of probability. Topics include the binomial and normal distributions, expected value, and variance. The notions of sampling, hypothesis testing, and confidence intervals are applied to elementary situations.

Number of Credits: 3
Prerequisites: None.
Course-Section and Instructors

Course-Section	Instructor
Math 105-103	Professor P. Natarajan

Office Hours for All Math Instructors: Fall 2018 Office Hours and Emails
Required Textbook:

Title	Introductory Statistics v1.0
Author	Douglas S. Shafer and Zhiyi Zhang
Edition	1st
Publisher	---
ISBN \#	978-1453344873
Other Textbook	Statistics Using Technology by Kathryn Kozak, 2nd Ed.

Reference Textbooks

- Openstax: Introductory Statistics
- Senior Contributing Author(s): Barbara Illowsky and Susan Dean
- Digital: ISBN-10: 1-947172-05-0
- Inferential Statistics and Probability: A Holistic Approach
- Author: Maurice A. Geraghty
- OpenStax CNX: Collaborative Statistics Using Spreadsheets

Abstract

- Authors: Susan Dean, Irene Mary Duranczyk, Barbara Illowsky, Suzanne Loch, Janet Stottlemyer - OpenIntro Statistics 3rd edition - Author: David M Diez, Christopher D Barr, and Mine Cetinkaya-Rundel

Free PDF copies of the textbooks are available online. See course homepage on Canvas for details University-wide Withdrawal Date: The last day to withdraw with a W is Monday, November 12, 2018. It will be strictly enforced.

COURSE GOALS

Course Objectives

- The objective of this course is to acquaint students with basic concepts and methods in statistics and probability and demonstrate real world applications using examples drawn from various fields. Topics to be covered include sampling, descriptive statistics, correlation and regression, notions of probability, binomial and normal distributions, estimation and hypothesis testing.

Course Outcomes: Upon successful completion of this course, the student will be able to -

- Demonstrate their understanding of various statistical terms, types of data, and data collection methods
- Efficiently summarize, organize, and present data
- Effectively compute measures of central tendency, position, and variation and interpret the results
- Demonstrate their understanding of notions of probability and distributions
- Perform statistical analysis, such as estimation, hypothesis testing, correlation and regression and draw conclusions
- Apply statistical reasoning to real world problems and make informed decisions

Course Assessment: The assessment tools used will include weekly homework assignments/quizzes, two midterm exams and a cumulative/comprehensive final exam.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework and Quizzes	15\%
Midterm Exam I	25\%
Midterm Exam II	25\%
Final Exam	35\%

Your final letter grade will be based on the following tentative curve.

A	90-100	C	65-74
B+	85-89	D	55-64
B	80-84	F	0-54
C+	75-79		

Attendance Policy: Attendance at all classes will be recorded and is mandatory. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

Homework and Quiz Policy: Homework will be assigned every week in class/on canvas. In addition, quiz would be given in class.

Software: Minitab/Excel will be used in the course for activities/assignments/demonstration in class lectures. Smartphone/laptop will be needed for in-class practice problems and activities.

Exams: There will be two midterm exams held in class during the semester and one comprehensive final exam. Exams are held on the following days:

Midterm Exam I	October 25, 2018
Midterm Exam II	November 20, 2018
Final Exam Period	December 15-21, 2018

The final exam will test your knowledge of all the course material taught in the entire course. Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Math Tutoring Center: Located in the Central King Building, Lower Level, Rm. G11 (See: Fall 2018 Hours)
Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for Instructor Office Hours and Emails.

All students must familiarize themselves with and adhere to the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. The Department of Mathematical Sciences takes these policies very seriously and enforces them strictly.

Accommodation of Disabilities: Disability Support Services (DSS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services at 973-596-5417 or via email at lyles@njit.edu. The office is located in Fenster Hall Room 260. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Disability Support Services (DSS) website at:

- http://www5.njit.edu/studentsuccess/disability-support-services/

Important Dates (See: Fall 2018 Academic Calendar, Registrar)

Date	Day	Event
September 4, 2018	T	First Day of Classes

September 10, 2018	M	Last Day to Add/Drop Classes
November 12, 2018	M	Last Day to Withdraw
November 20, 2018	T	Thursday Classes Meet
November 21, 2018	W	Friday Classes Meet
November 22-25, 2018	R - Su	Thanksgiving Recess
December 12, 2018	W	Last Day of Classes
December 13 \& 14, 2018	$R \& F$	Reading Days
December 15-21, 2018	Sa - F	Final Exam Period

Course Outline

Please note: Assignments will be assigned in class/canvas.

- ST: Statistics using Technology by Kathyrn Kozak
- IS : Introductory Statistics v1.0 by Douglas S. Shafer and Zhiyi Zhang

Week $\#$	Textbook and Chapter \#	
	ST chapter 1	ST chapter 1

$\begin{aligned} & \text { WEEK } \\ & 7 \\ & 10 / 18 \\ & {[\mathrm{R}]} \\ & \hline \end{aligned}$	$\left.\right\|_{4} ^{I S} \text { chapter }$	Discrete random variable: Additional Properties of the Binomial Distribution
		REVIEW FOR EXAM \#1
WEEK 8 10/25 [R]		MIDTERM EXAM I: THURSDAY ~ OCTOBER 25, 2018
	$\begin{aligned} & \text { IS chapter } \\ & 5 \end{aligned}$	Continuous random variable: Normal Probability Distribution
$\begin{aligned} & \text { WEEK } \\ & 9 \\ & 11 / 1 \\ & {[R]} \end{aligned}$	IS chapter 5	Continuous random variable: Areas under Standard Normal Distribution, Areas under any Normal Curve
	IS chapter	Sampling Distributions: Introduction
$\begin{aligned} & \text { WEEK } \\ & 10 \\ & 11 / 8 \\ & {[R]} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IS chapter } \\ & 6 \end{aligned}$	Sampling Distributions: Sampling Distribution continued, The Central Limit Theorem
		(WITHDRAWAL DEADLINE MONDAY, NOVEMBER 12, 2018)
$\begin{aligned} & \text { WEEK } \\ & 11 \\ & 11 / 15 \\ & {[\mathrm{R}]} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IS chapter } \\ & 7 \end{aligned}$	Estimation: Large sample and small sample estimation of the population mean
		REVIEW FOR EXAM \#2
$\begin{aligned} & \text { WEEK } \\ & 12 \\ & 11 / 20 \\ & {[\mathrm{~T}]} \\ & \hline \end{aligned}$		MIDTERM EXAM II: TUESDAY ~ NOVEMBER 20, 2018 Classes follow Thursday Schedule
	$\begin{aligned} & \text { IS chapter } \\ & 7 \end{aligned}$	Estimation: Estimation of population proportion; sample size considerations
		THANKSGIVING RECESS: 11/22(R) TO 11/25(S)
$\begin{aligned} & \hline \text { WEEK } \\ & 13 \\ & 11 / 29 \\ & {[R]} \end{aligned}$	IS chapter 8	Testing Hypotheses: Elements of hypothesis testing, Large sample tests for a population mean
	$\begin{array}{\|l} \text { IS chapter } \\ 8 \end{array}$	Testing Hypotheses: Small sample tests for a population mean
$\begin{aligned} & \text { WEEK } \\ & 14 \\ & 12 / 6 \\ & {[\mathrm{R}]} \\ & \hline \end{aligned}$	IS chapter 8	Testing Hypotheses: Large sample tests for a population proportion
		REVIEW FOR FINAL EXAM
$\begin{aligned} & 12 / 13-12 / 14[\mathrm{R}- \\ & \mathrm{F}] \end{aligned}$		READING DAYS
12/15-12/21		FINAL EXAM WEEK

