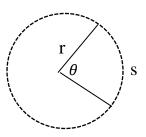
Math 110 Common Exam #1

September 27, 2017

	Problem(s)	Score	Total
Time: 1 hour and 25 minutes			
Instructions: Show all work for full credit. No outside materials or calculators allowed.			
Extra Space: Use the backs of each sheet for extra space. Clearly label when doing so.			
Name:			
ID #:			
Instructor/Section:			
"I pledge by my honor that I have abided by the			
NJIT Academic Integrity Code."			
(Signature)			

Relevant Formulas for this Exam:

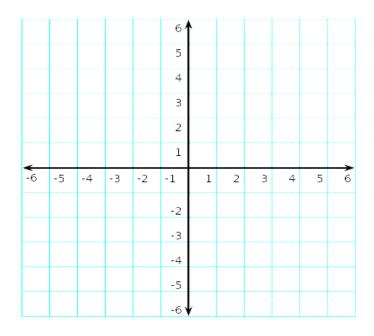

Circular motion and equations relating to a sector of a circle, radius r (as shown to the right).

 $s = r\theta$

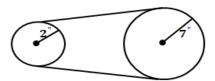
 $v = r\omega$

$$A = \frac{1}{2}r^2\theta$$

 $P = P_0 e^{kt}$

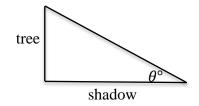

1. (16 pts) Find the exact value of the following	expression.
a) 2ln √e + 2 ^{log₂4} + log ₂ [16]	b) log ₃ 135 – log ₃ 45
c) $\log_2[e^{\ln \theta}]$	d) 2[cos(45°)] ² + 2[sin(45°)] ² – 2 tan(45°)

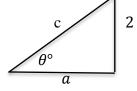
2. (6 pts) Given that $\cos \theta = \frac{2}{5}$, where θ is an acute angle, find the exact values of the 5 other trigonometric functions. (*Rationalize any and all denominators*).


3. a) (4 pts) Write the expression in condensed (compressed) form with a coefficient of 1. (Assume all variables represent positive numbers) $\frac{1}{3}\log(x+2)^3 + \frac{1}{2}[\log(x^4) - \log(x^2 - x - 6)^2]$

b) (4 pts) Write the expression in expanded form. (Assume all variables represent positive numbers) $\log \sqrt{100x\sqrt{y}}$

4. (10 pts) Graph the function $y = -2^{x+2} - 1$, on the set of axes below by making a table of values or using transformation. Be sure to label the asymptote on the graph, if any exists.


5. Given the 2 in. radius wheel and 7 in. radius wheel pulley system as shown below, find the following. (*You Can't Use Ratios*).


a) (5 pts) If the 2 in. radius wheel turns through an angle of 50°, what angle (expressed in degrees) does the 7 in. radius wheel turns through.

b) (5 pts) If the 2 in. radius wheel is spinning at a rate of 6 rpms, how many rpms is the 7 in. radius wheel making?

6. a) (5 pts) Find the height of a tree that casts a 100-feet shadow on the ground if θ (the angle of elevation) to the sun from the ground is 45° as shown in the diagram below

b) (5 pts) Given the right triangle as labeled below, if $\sin \theta = \frac{1}{4}$, find the lengths of side 'a' and 'c'. *Simplify* your answers as much as possible.



7. (20 pts) Solve the following equation for all real solutions	s. Make sure all answers are in the domain of the
original problem.	

original problem. a) $\log_6(x+2) + \log_6(x-3) = 1$	b) $3xe^x + x^2e^x = 0$		
c) $4(2^{6-2x}) - 5 = 27$	d) $\log(x^2 + 1) = \log(x - 2) + \log(x + 3)$		

8. a) (5 pts) Suppose that $\cos \theta = \frac{1}{x}$ where 'x' is a nonzero constant. Find the values of the other 5 trigonometric functions in terms of 'x'. (*You do not need to rationalize the denominator*)

b) (5 pts) Given the rectangle (4 feet by 2 feet) inscribed in the semicircle as shown below, find the area of the shaded region of the semicircle.

9. a) (4 pts) Given that $f(x) = 5^x + 5^{-x}$ and $g(x) = 5^x - 5^{-x}$, evaluate the following expression below. *Fully simplify your answer.* $[f(x)]^2 + [g(x)]^2$

b) (3 pts) Simplify completely (give your answer with positive exponents only) $\int (-u^2 v)^3 v^{-4} 1^{-2}$

$(-x^2y)^3y^{-4}$	⁻²
$(xy)^5$	

c) (**3 pts**) Simplify completely.

 $\frac{\sqrt{16-16x^2}}{4-4x}$