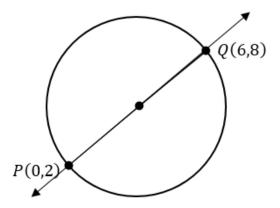

Math 110 Common Exam III April 19, 2017

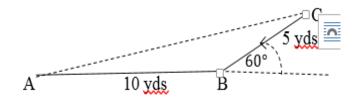
Relevant Formulas for this Exam

Show all your work. Simplify and reduce all answers as much as possible. Rationalize all denominators.


- 1. a) (5 pts) Solve the following system of linear equations using any method discussed in class. $\begin{cases} 2x + 3y = 6\\ -3x - y = 5 \end{cases}$

b) (10 pts) Solve the following system of linear equations by Substitution or Elimination. Note: If you use the Substitution Method, start with the first equation and isolate for x in terms of y and z, then substitute for x in the other two equations.

 $\begin{cases} x - 3y + 2z = 14 \\ 2x + 5y - z = -9 \\ -3x - y + 2z = 2 \end{cases}$


2. (10 pts) A line passing through the center of a circle intersects diagonally the diameter with the endpoints P(0,2) and Q(6,8) on the circle as shown below.

a) Find the equation of the line in the y = mx + b form.

b) Find the equation of the circle in Standard Form.

3. (5 pts) To approximate the length of a marsh a surveyor walks 10 yds from point A to point B, then turns through 60° and walks 5 yds to point C. Find the length \overline{AC} across the marsh. Refer to the figure below.

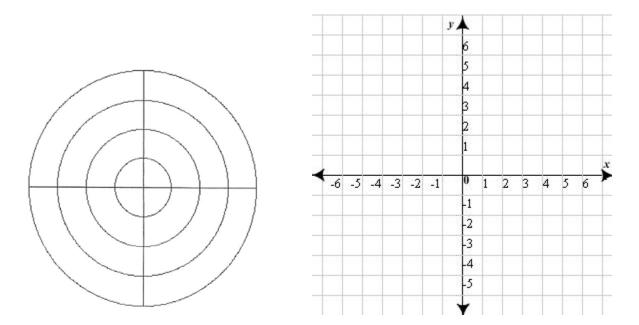
4. a) (7 pts) Suppose a triangle $\triangle ABC$ has a side 'b' with a length of 4 in. while $\angle C = 30^{\circ}$ and $\angle A = 120^{\circ}$. Use this information to solve for $\angle B$, side 'c' and side 'a'.

b) (7 pts) Suppose a triangle *ABC* has side lengths of: $a = \sqrt{13}$, b = 2 and $c = \sqrt{3}$. Solve the triangle for $\angle A$ in degrees.

c) (7 pts) Suppose a triangle *ABC* has side lengths of a = 2, b = 3 and c = 4, find the area of the triangle.

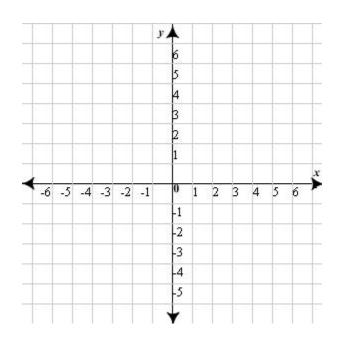
5. (12 pts) Solve the following trigonometric equation for x over the given interval. a) $2\cos^2(x) - 3\sin(x) = 3$, *for all possible values of x (in radians)*

b) $2\cos(3x) + 1 = 2$, *in the interval* $[0, 2\pi)$


6. a) (5 pts) Write the equation in standard form: $9x^2 + 4y^2 - 18x + 8y - 23 = 0$.

b) (10 pts) Graph the following equation of the ellipse on the axis given below. Find and label the center, the vertices and the focal points.

$$\frac{(x+1)^2}{25} + \frac{(y-3)^2}{4} = 1$$


7. (10 pts) Sketch the graph of the polar curve: $r = 1 - \cos \theta$ on either of the axes below.

8. a) (3 pts) Convert the rectangular coordinates $(-3, 3\sqrt{3})$ to polar coordinates with r > 0 and $0 \le \theta < 2\pi$.

b) (3 pts) Convert the equation in polar form to rectangular form: $r^2 \sin(2\theta) = 4$.

9. (6 pts) Graph the piecewise function: $f(x) = \begin{cases} e^x + 2, & \text{if } x \le 0\\ 2 - 2x, & \text{if } 0 < x \le 1 \\ \ln(x), & \text{if } x > 1 \end{cases}$ on the set of axes below.

