Math 110 Common Exam #1 February 15, 2017

	Problem(s)	Score	Total
Time: 1 hour and 25 minutes			
Instructions: Show all work for full credit. No outside materials or calculators allowed.			
Extra Space: Use the backs of each sheet for extra space. Clearly label when doing so.			
Name:			
ID #:			
Instructor/Section:			
"I pledge by my honor that I have abided by the			
NJIT Academic Integrity Code."			
(Signature)			

Relevant Formulas for this Exam:

Circular motion and equations relating to a sector of a circle, radius r (as shown to the right).

 $s = r\theta$

 $v = r\omega$

$$A = \frac{1}{2}r^2\theta$$

 $P = P_0 e^{kt}$

. (12 pts) Find the exact value of the follow	ving expression.
a) $\ln \sqrt[3]{e^2}$	b) $\log_2 \sqrt[3]{8} - \log 100$
$[(\pi)]$	
c) $\log_2\left[\sin\left(\frac{\pi}{6}\right)\right]$	d) $4\cos^2(45^\circ) + 4\sin^2(45^\circ) - e^{iii4}$

2. a) (5 pts) Given that $\tan \theta = \frac{4}{3}$, with θ in Quadrant I, find the exact values of $\cos \theta$ and $\csc \theta$.

b) (5 pts) Suppose a metal block is cooling so that its temperature T(in °C) is given by $T = 400 \cdot 2^{-2t}$, where t is given in hours. How long has the block been cooling if its temperature is now 100 °C?

3. a) (5 pts) Graph the function $y = 2^{-x} - 2$ on the set of axes below by making a table of values or using transformation. Be sure to label the asymptote on the graph, if any exists.

b) (5 pts) Graph the function $y = -\log_2(x - 3)$, on the set of axes below by making a table of values or using transformation. Be sure to label the asymptote on the graph, if any exists.

4. a) (4 pts) Given the right triangle as labeled below, if $\tan \theta = \frac{1}{3}$, find the lengths of side 'a' and 'c'.

b) (6 pts) Find the area of the equilateral triangle $\triangle ABC$ and the area of the circle shown below.

- 5. Given a 4 in. wheel and 7 in. wheel pulley system, find the following. (Do Not Use Ratios).
 - a) (5 pts) If the 4 in. wheel turns through an angle of 150°, find the angle (in degrees) that the 7 in. wheel turns through.

b) (5 pts) If the 7 in. wheel is spinning at a rate of 6 rpms, how many rpms is the 4 in. wheel making?

6. (8 pts) Given $\log_a 8 = -2$ and $\log_a 3 = 4$, evaluate the following:

log _{<i>a</i>} (24)	log _{<i>a</i>} (64)	$\log_a(\sqrt[4]{3})$	$\log_a(8a^2)$

7. a) (6 pts) Suppose that $\sin \theta = \frac{3}{x}$ where 'x' is a nonzero constant. Find the values of the other 5 trig. functions in terms of 'x'. (*Do not rationalize the denominator*)

b) (5 pts) Given the square (4 feet by 4 feet) inscribed in the circle as shown below, find the area of the shaded region.

8. (20 pts) Solve the	following equation	for all solutions	, making sur	e all answers	are in the	domain of the
original problem.						

a) $\log_5(x) + \log_5(x+1) = \log_5(2x)$	b) $3(2^x) = 42$ (You may leave your answer in logarithmic form)
c) $x^{5/6}(x^{1/3})^2 = 27$	d) $\log_4(x) - \log_4(x - 1) = \cos\left(\frac{\pi}{3}\right)$

e) $e^x + 2e^{-x} = 3$

9. a) (2 pts) Simplify completely (assume all variables represent positive numbers)

 $\frac{\sqrt{9x^2-9}}{3x-3}$

b) (3 pts) Simplify completely (*using positive exponents only*) $\frac{y^{-2} \sqrt{x^7}}{(2y^2)^3 x^{3/2}}$

c) (4 pts) Solve the following equation. Fully simplify your answer. $\frac{1}{2}x^2 = 1 - 2x$