Math 110 Final Exam December 19, 2016

Problem(s) Score Total Time: 2 hour and 30 minutes **Instructions:** Show all work for full credit. No outside materials or calculators allowed. **Extra Space:** Use the backs of each sheet for extra space. Clearly label when doing so. Name: _____ **ID** #: Instructor/Section: "I pledge by my honor that I have abided by the NJIT Academic Integrity Code." (Signature) Circular motion and equations relating to a sector of a circle, radius r (as shown to the right). S θ $A = \frac{1}{2}\theta r^2$ (where A is the area of the sector cut out by θ) $s = r\theta$ (where s is the arc length as shown) $v = \omega r$ (where v is velocity and ω is angular velocity) sin(A+B) = sin(A)cos(B) + sin(B)cos(A)sin(A-B) = sin(A)cos(B) - sin(B)cos(A) $\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)$ $\cos(A-B) = \cos(A)\cos(B) + \sin(A)\sin(B)$ В Given $\triangle ABC$ as shown to the right: С а $\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$ $a^{2} = b^{2} + c^{2} - 2bc\cos(A)$ b $b^{2} = a^{2} + c^{2} - 2ac\cos(B)$ $c^2 = b^2 + a^2 - 2ab\cos(C)$

Area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ where s = (a+b+c)/2

1.	(12 pts) Find	the exact value	e of the follow	ing, or state	that it is undefined.
----	---------------	-----------------	-----------------	---------------	-----------------------

a) $\cos\left(\frac{16\pi}{3}\right)$ b) $\tan\left[\sin^{-1}\left(-\frac{4}{7}\right)\right]$	
(5-)	
c) $4^x \cdot 2^{1-2x}$ d) $\sin^2\left(\frac{3n}{4}\right)$	

2. a) (4 pts) Sketch the equation of the ellipse on the axis below by finding and labeling the center and the vertices on the graph: $\frac{(x+1)^2}{16} + \frac{(y-2)^2}{4} = 1.$

b) (4 pts) Graph one period of the equation below on the set of axes by finding the amplitude, period and the quarter points. Be sure to label the 5 key points on the graph.

$$y = 3\sin\left[\frac{1}{2}(x-\pi)\right]$$

3. (12 pts) Solve the following equation for all va	alues of x.
a) $\log_2(x-3) + \log_2(x-4) = 1$	b) $e^{3x} = 4e^{2x} - 3e^x$
c) $x^3 + 2x^2 = 2x$	d) Solve for all values of x in $[0, 2\pi)$ $2 \sin \left(x - \frac{\pi}{6}\right) + 1 = 2$

4. a) (4 pts) Sketch the graph of the polar curve: $r = 2 \cos(2\theta)$ on the polar axis given below.

b) (4 pts) Use transformations or a table of values to sketch the graph of: $y = -\ln(x + 1) - 1$. Be sure to identify and label the asymptote, if any exist.

5. (12 pts) Given $\sin(\beta) = \frac{3}{5}$ with β in Quad. If a) $\sin(\alpha + \beta)$	Ind $\cos(\alpha) = \frac{5}{13}$ with α in Quad. IV. Evaluate the following. b) $\cos(2\alpha)$			
$c) \sin\left(\frac{\beta}{\beta}\right)$	d) $2\cos^2(3\beta) \pm 2\sin^2(3\beta)$			
(2)				

6. (8 pts) Find the Partial Fraction Decomposition for the following rational expression. $\frac{2x + 1}{x^2 + 3x + 2}$

7. (10 pts) A wheel of radius 4 inches rolls 9π inches to the left. A point on the rim of this wheel has the initial Cartesian coordinates with respect to the center of the wheel of $(-\sqrt{7}, 3)$. Find the final Cartesian coordinates of this point with respect to the center of the wheel after it stops.

8. (10 pts) A system of linear equations is given below along with its associated augmented matrix form. Use any method discussed in class to solve for x, y and z.

(x-y-z=1)	<u>[</u> 1	-1	-1	1
2x - 3y + z = 10	2	-3	1	10
(2y-z=-1)	Lo	2	-1	-1

9. (10 pts) Given $A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -1 \\ 4 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 & -2 \\ 0 & -1 & 3 \end{bmatrix}$, perform the following matrix operation, if possible. If not, explain why. a) B - A

b) 3BC

c) Solve for the unknown matrix X. 3A - X = 2B 10. (4 **pts**) In a triangle $\triangle ABC$, $b = \sqrt{6}$, c = 2 and $\angle B = 60^{\circ}$, find $\angle C$.

11. a) (3 pts) Given $f(x) = x^2 - 1$, evaluate the following expression. Simplify completely. $\frac{f(t+h) - f(t)}{h}$

b) (3 pts) Simplify completely:
$$\frac{\sqrt[3]{x^5}}{2x^2(16x^3)^{-\frac{1}{2}}}$$