Math 110 Common Exam III November 30, 2016

	Problem(s)	Score	Total
Time: 1 hour and 25 minutes			
Instructions: Show all work for full credit. No outside materials or calculators allowed.			
Extra Space: Use the backs of each sheet for extra space. Clearly label when doing so.			
Name:			
ID #:			
Instructor/Section:			
"I pledge by my honor that I will abide by the			
NJIT Academic Integrity Code."			
(Signature)			

Relevant Formulas for this Exam

Show all your work. Simplify and reduce all answers as much as possible. Rationalize all denominators.

1. a) (**5 pts**) Solve the following system of two linear equations:

 $\begin{cases} 3x + 2y = 19 \\ x - 4y = -3 \end{cases}$

b) (10 pts) Solve the following system of linear equations by Substitution or Elimination. *Note: If you are using the Substitution Method, start with the first equation and isolate for x in terms of y and z, then substitute for x in the other two equations.*

 $\begin{cases} x - y + z = 2 \\ 2x + y - 2z = -2 \\ 3x - 2y + z = 2 \end{cases}$

2. (10 pts) Given the triangle $\triangle ABC$ with $\angle A = 150^\circ, b = 3$ and $c = \sqrt{3}$, solve for side 'a' and find the area of the triangle.

3. (10 pts) In a triangle $\triangle EFG$, e = 10, $\angle E = 45^{\circ}$ and $\angle F = 60^{\circ}$. Solve the triangle for $\angle G$ and side 'f'.

4. a) (6 pts) Solve the following trigonometric equation for all possible solutions of x in the interval $[0,2\pi)$. $2\sin x \cos(2x) - \sin x = 0$

b) (5 pts) Solve the following trigonometric equation for all possible solutions of x. Express the solutions in radians.

 $2\sin(x) + \cos^2(x) + \sin^2(x) = 0$

c) (4 pts) Solve the following equation for all possible solutions of x. $\frac{1-x}{x} = \sqrt{5}$ (rationalize your answer) 5. (10 pts) Suppose a triangle $\triangle ABC$ has side lengths of a = 4, b = 5 and c = 8, find the area of the triangle.

6. (15 pts) Graph the following equation on the axis given below. Show all intercepts, center points, vertices and end points, as appropriate.

a)
$$(x-2)^2 + (y+1)^2 = 25$$

b)
$$(x - 4) + 2(y + 3) = 4$$

c)
$$\frac{(x+1)^2}{25} + \frac{(y-3)^2}{9} = 1$$

7. a) (5 pts) Consider the rectangular curve: $y^2 = 4x$. Convert this equation into a polar curve of the form $r = f(\theta)$. *Note:* r = 0 *is a trivial curve and can be discarded.* Simplify $r = f(\theta)$ to a form that is a product of two of the six basic trigonometric functions.

b) (5 pts) Write the equation in standard form: $9x^2 + 4y^2 - 18x + 16y - 11 = 0$. Identify its type.

8. a) (10 pts) Sketch the graph of the polar curve: $r = 2 + 2 \sin \theta$ on either of the axes below.

b) (5 pts) Find the intersection point(s) in polar coordinates (r, θ) where the curve $r = -2 \sin \theta$ intersects the curve $r = 2 + 2 \sin \theta$.

c) (4 pts) Graph the curve: $r = -2 \sin \theta$ on the same set of axes as the curve above, labeling the point(s) of intersection found above in part b.