Math 110 Common Exam #1 September 28, 2016

	Problem(s)	Score	Total
Time: 1 hour and 25 minutes			
Instructions: Show all work for full credit. No outside materials or calculators allowed.			
for extra space: Clearly label when doing so.			
Name:			
ID #:			
Instructor/Section:			
<i>"I pledge by my honor that I have abided by the NJIT Academic Integrity Code."</i>			
(Signature)			

Relevant Formulas for this Exam:

Circular motion and equations relating to a sector of a circle, radius r (as shown to the right).

 $s = r\theta$ (where s is the arc length as shown)

 $v = r\omega$ (where v is velocity and ω is angular velocity)

 $A = \frac{1}{2}r^2\theta$ (where A is the area of the sector cut out by θ)

1. (9 pts) Simplify completely (assume all variables represent positive numbers)

a)
$$\frac{\sqrt[3]{x^5}}{2x^2(16x^3)^{-\frac{1}{2}}}$$
 b) $(\sqrt{x} + y)(\sqrt{x} - y)$ c) $\frac{\sqrt{25x^4 + 25x^2}}{x^2 + x}$

2. (9 pts) Find the exact value of the logarithmic expression.

a) $\log_4 80 - \log_4 5$	b) $\ln e^2 - \log_3 \sqrt{9} + \log 1$	c) $\log_3(\log_2 8)$

3. (6 pts) Let $\log_a 9 = 1.5$ and $\log_a 6 = 1.2$. Evaluate each of the following:

a) log _a (54)	b) $\log_a\left(\frac{9}{a^2}\right)$	c) $\log_a \sqrt[4]{36}$

5. a) (3 pts) Write the expression in condensed form with a coefficient of 1: $\frac{1}{2}\log x - 2\log y - 3\log z$

b) (3 pts) Write the expression in expanded form. (Assume all variables represent positive numbers) $\log_3 \left[\frac{27\sqrt{x^2+1}}{(y+3)^5} \right]$ 6. (8 pts) Let θ be an acute angle such that $\cos \theta = \frac{2}{5}$. Find the exact values of $\sin \theta$, $\tan \theta$ and $\sec \theta$.

7. (8 pts) Suppose a certain right triangle is labeled as shown below. Given that $\tan \theta = 2$, find: a) the length of side x

х

b) $\cos \theta$

8. (8 pts) Suppose that $\sin \theta = \frac{4}{K}$ where 'K' is a nonzero constant. Find the exact values of $\cos \theta$, $\cot \theta$ and $\csc \theta$ in terms of 'K'.

9. (8 pts) At a distance of 400 feet from the base of a building, the angle of elevation to the top of a building is 45° and the angle of elevation to the top of an antenna on top of the building.is 60°. Find the height of the building and the height of the antenna. (*Refer to the figure below*).

10. (10 pts) Given the 3 in. and 9 in. pulley system below,

a) If the 3 in. wheel turns through an angle of 100°, find the angle (in degrees) that the 9 in.wheel turns through.

b) If the 3 in. wheel is spinning at a rate of 6 rpm, how many rpms is the 9 in. wheel making?

11. (8 pts) Given the function $y = \log_2(x - 2) + 1$, identify the domain, range and asymptote, if any. Then graph the function by making a table of values or using transformation. Be sure to label the asymptote on the graph.

12. (8 pts) Given the function $y = -4^{-x} - 1$, identify the domain, range and asymptote, if any. Then graph the function by making a table of values or using transformation. Be sure to label the asymptote on the graph.

