Michael R. Booty

Contact Info

Title: Professor
Email: michael.r.booty@njit.edu
Office: CULM 524
Hours: Spring 2017: Tues. 4:00-5:00pm and Thurs. 3:00-4:00pm, or by appointment
Phone: 973-596-3484
Dept: Mathematical Sciences
Webpage: http://web.njit.edu/~booty

About Me

Michael Booty´s interests are in applied mathematics. More specifically, analytical and approximate solution techniques, and mathematical modeling in the natural sciences and engineering. Most of the applications he has considered occur in the dynamics of fluids and combustion phenomena, with some electromagnetics. More detail can be found at the tabs on research and publications & projects. He also teaches a variety of courses across the undergraduate and graduate mathematics curriculum.


  • PhD, Mathematics, Imperial College, University of London
  • MA, University of Cambridge

Organizational Memberships

  • Society for Industrial and Applied Mathematics
  • American Physical Society
  • The Combustion Institute
  • American Institute of Aeronautics and Astronautics



Research Interests

  • Applied Mathematics: Mathematical modeling and methods of analysis.
  • Asymptotic analysis and singular perturbation methods.
  • Numerical methods.
  • Stability and bifurcation theory for ordinary and partial differential equations.
  • Nonlinear waves and other nonlinear phenomena.
  • Applications in fluid mechanics and combustion (including some collaborative experimental work).

Michael Booty´s principal research interests are in mathematical modeling and analytical and approximate solution techniques (i.e., asymptotic and numerical techniques). Most of the applications he has considered are in the areas of fluid mechanics and combustion. His main studies in combustion have focused on the time-dependent and multidimensional dynamics of propagating reaction waves in gas mixtures, solid phase mixtures, and porous media, analyzed by a combination of multiple-scale, stability and bifurcation techniques. His other studies have included prototype reaction-diffusion models and collaboration on experimental studies for conditions that minimize pollutant formation in the thermal oxidation of common materials. 

Current Research

His current research interests include: studies on interfacial flows and surfactants, slow localized thermal waves in material processing, the direction of small-scale objects via magnetic fields, and a two-dimensional potential flow model for the near-field interaction of a pair of flexible lifting membranes, or sails.



  1. Modeling of magnetic-field-assisted assembly of semiconductor devices. R.D Rivero et al. Journal of Electronic Materials 37, 2008, 374-378.
  2. Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid. M. Hameed et al. Journal of Fluid Mechanics 594, 2008, 307-340.
  3. Steady deformation and tip-streaming of a slender bubble with surfactant in an extensional flow. M.R. Booty and M. Siegel Journal of Fluid Mechanics 544, 2005, 243-275.
  4. Reflection and transmission from a thin inhomogeneous cylinder in a rectangular TE10 waveguide. M.R. Booty and G.A. Kriegsmann Progress in Electromagnetics Research 47, 2004, 263-296.
  5. Chemical makeup and physical characterization of a synthetic fuel and methods of heat content evaluation for studies on MSW incineration. S.S. Thipse et al. Fuel 81, 2002, 211-217.
  6. Polymer pyrolysis and oxidation studies in a continuous feed and flow reactor: cellulose and polystyrene. B-I. Park et al. Environmental Science and Technology 33, 1999, 2584-2592.
  7. Microwave-induced combustion: a one dimensional model. M.R. Booty, J.K. Bechtold and G.A. Kriegsmann. Combustion Theory and Modelling 2 (1), 1998, 57-80.
  8. Time-dependent premixed deflagrations. M.R. Booty. AIAA Technical Paper 96-0910, 1996.
  9. Simulation of a three-stage chlorocarbon incinerator through the use of a detailed reaction mechanism: chlorine to hydrogen mole ratios below 0.15. M.R. Booty, J.W. Bozzelli, W. Ho and R.S. Magee. Environmental Science and Technology 29 (12), 1995, 3059-3063.
  10. The accommodation of traveling waves of Fisher´s type to the dynamics of the leading tail. M.R. Booty, R. Haberman and A.A. Minzoni. SIAM J. Appl. Math. 53 (4), 1993, 1009-1025.
  11. Interaction of pulsating and spinning waves in condensed phase combustion. M.R. Booty, S.B. Margolis and B.J. Matkowsky. SIAM J. Appl. Math. 46 (5), 1986, 801-843.