1. (15 points) a) Let \(A = [v_1 v_2 v_3 v_4] \), where \(v_1 = (1, 0, 1)^T, v_2 = (3, 0, 3)^T, v_3 = (0, 1, 1)^T, v_4 = (2, 4, 6)^T, \) and \(b = (1, 6, 7)^T \). Find the general solution of \(Ax = b \).

b) Are the columns of \(\text{Col}(A) \) linearly independent?

c) Is the system \(Ax = b \) solvable for each \(b \) in \(\mathbb{R}^3 \)?

2. (15 points) a) Let \(A = [v_1 v_2 v_3 v_4] \), where \(v_1 = (2, 3)^T, v_2 = (0, 4)^T, v_3 = (-3, 2)^T, v_4 = (1, 2)^T \). Find bases of \(\text{Nul}(A), \text{Col}(A) \) and \(\text{Row}(A) \).

b) What is the rank of \(A \)? Is the \(\text{Nul}(A) \) orthogonal to \(\text{Col}(A) \)? Explain.

3. (15 points) Let \(u = (2, 1, 0)^T, v = (1, 1, 1)^T \) and \(V = \text{span}\{v\} \).

a) Compute \(w = \text{proj}_V u \).

b) Write \(u \) as the sum of \(w \) and a vector orthogonal to \(v \).

c) Find the distance from \(u \) to \(V \).

4. (20 points) Let \(A = [v_1 v_2 v_3] \), where \(v_1 = (1, 1, 1)^T, v_2 = (1, 1, 1)^T, v_3 = (1, 1, 1)^T \).

a) Find the eigenvalues of \(A \).

b) Find bases of the corresponding eigenspaces.

c) Diagonalize \(A \) (i.e, write it as \(A = PDP^{-1} \)). Do not compute \(P^{-1} \).

d) Using part c), compute \(\text{det}(A) \). Is \(A \) invertible?

5. (20 points) Let \(A = [v_1 v_2 v_3] \), where \(v_1 = (1, 1, 0)^T, v_2 = (1, 0, 1)^T, v_3 = (1, 0, 0)^T \).

a) Use the Gram-Schmidt method to find an orthogonal basis for \(V = \text{Col}(A) \).

b) Find the QR factorization of \(A \).

c) Is \(A \) invertible? Is the system \(Ax = b \) solvable for each \(b \) in \(\mathbb{R}^3 \)? Give the formula for its solution(s) when solvable? Justify your answer.

6. (15 points) a) Write down of the matrix \(A \) corresponding to the quadratic form \(Q(x) = x_1^2 + 2x_1x_2 + 2x_1x_3 \).

b) Is \(Q \) positive definite, negative definite, or indefinite?

c) Orthogonally diagonalize \(A \) and find \(2A^5 \) and \(\text{det}(2A^5) \).