1) (20 points) Let \(A = [v_1 v_2 v_3] \) with
\(v_1 = (2, -1, 1)^T, \ v_2 = (0, 8, -2)^T \) and
\(v_3 = (6, 5, 1)^T \) and \(b = (10, 3, 3)^T \).

a) Are the columns of \(A \) linearly independent? Is \(A \) invertible?
b) Find the general solution of \(Ax = b \).
c) What is a basis and the dimension of \(\text{Col}(A) \)? Is \(b \) in \(\text{Col}(A) \)?
d) What is the rank of \(A \) and the dimension of the null space of \(A \)?

2) (15 points) Let
\(u = (-1, 1, 1)^T, \ v = (3, -1, 2)^T \) and \(V = \text{span}\{v\} \).

a) Find the projection \(w = \text{proj}_V u \) of \(u \) onto \(V \).
b) Write \(u \) as the sum of \(w \) and a vector orthogonal to \(v \).
c) Find the distance from \(u \) to \(V \).

3) (20 points) Let \(A = [x_1 x_2 x_3] \) with
\(x_1 = (1, -1, -1)^T, \ x_2 = (0, 3, 3)^T \) and
\(x_3 = (3, 2, 4)^T \).

a) Use the Gram-Schmidt process to find an orthogonal basis for \(V = \text{Col}(A) \).
b) Find the QR factorization of \(A \). Express \(R \) in terms of \(Q \) and \(A \), but don’t compute it.
c) Use part b) to determine if \(A \) is invertible (no computation is required).

4) (20) Let \(A = [v_1 v_2 v_3] \) with
\(v_1 = (7, -3, 2)^T, \ v_2 = (1, 3, 2)^T \) and
\(v_3 = (-2, 6, 2)^T \).

a) Find the eigenvalues of \(A \).
b) Find bases for the corresponding eigenspaces.
c) Diagonalize \(A \) (i.e., write it as \(A = PDP^{-1} \)). Do not compute \(P^{-1} \). Use it to find \(\det(A) \).

5) (25 points) a) Write down the matrix \(A \) corresponding to the quadratic form
\(Q(x) = 5x_1^2 + 4x_1x_2 + 2x_2^2 \).

b) Is \(Q \) positive definite, negative definite, or indefinite?
c) Orthogonally diagonalize \(A \) and find \(A^{10} \).
d) Find the change of variable \(x = Py \) that transforms \(Q \) into a quadratic form with just square terms. Compute this new form.