Calculus 3.3 - Derivatives of Trigonometric Functions

Review Problems

1. **Finding derivatives.** Find derivatives of the following functions:

 (a) \(y = x e^x + 3x \)

 (b) \(y = \frac{ex}{3x^2 + e^x} \)

 Basic Knowledge

2. Find the derivatives of the following functions:

 (a) \(y = \sin(x) - 3 \cos(x) \)

 (b) \(y = 2 \sec(x) + 4 \tan(x) \)

 (c) \(y = x \sin(x) \)

 (d) \(y = \frac{\csc(x)}{\cos(x) + \sin(x)} \)

3. Find the equation of a line tangent to \(y = \cos(x) \) at point \(x = \pi \).

4. Find the equation of a line normal to \(y = \frac{\tan(x)}{x} \) at point \(x = \pi \).

 Intermediate Knowledge

5. Find the derivatives of the following functions. Do not use chain rule if you know it.

 (a) \(y = (\sin(x))^2 \)

 (b) \(y = \frac{e^x \cos(x)}{\sin(x) + 1} \)

6. Find the equation of a line tangent and a line normal to \(f(x) = \frac{\sec(x) - 1}{\cos(x) - 1} \) at \(x = \pi \).

 Advanced Knowledge

7. Find points at which the line tangent to the graph of \(f(x) = \sin(x) - \cos(x) \) is horizontal.

8. Find points at which the line tangent to the graph of \(y = \tan(x) - \sec(x) \) is horizontal.

9. A mass is hung on a spring. It is then pulled down and released. It’s equation of motion is \(x(t) = -4 \cos(t) \), where \(t \) is in seconds and \(x \) is the distance of the mass from the equilibrium point in centimeters.

 (a) Find the position, velocity, and acceleration of the mass at \(t = \pi \) sec.

 (b) After what time will the mass reach the height of 4 cm above the equilibrium point?

 (c) After what time will the mass reach the velocity of 2 cm/sec?