DOCTORAL QUALIFYING EXAM
Department of Mathematical Sciences
New Jersey Institute of Technology

Statistics Part B: Real Analysis and Statistical Inference
AUGUST 2014

The first three questions are about Real Analysis and the next three questions are about Statistical Inference.

1. (a) State the definition of a measure.

 (b) Prove that if \(A \subset B \), then \(\mu(A) \leq \mu(B) \).

 (c) Prove that if \(A_1 \subset A_2 \subset A_3 \subset \ldots \), then \(\lim_{j \to \infty} \mu(A_j) = \mu \left(\bigcup_{i=1}^{\infty} A_i \right) \).

 (d) Prove that if \(A_1 \supset A_2 \supset A_3 \supset \ldots \) and \(\mu(A_1) < \infty \), then \(\lim_{j \to \infty} \mu(A_j) = \mu \left(\bigcap_{i=1}^{\infty} A_i \right) \).

2. The Hardy-Littlewood-Sobolev inequality reads:

 \[
 \left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)|x-y|^{-\lambda} g(y) \, dx \, dy \right| \leq C \|f\|_p \|g\|_q,
 \]
 where \(p, q > 1, f \in L^p(\mathbb{R}^n), g \in L^q(\mathbb{R}^n), 0 < \lambda < n \) with \(\frac{1}{p} + \frac{\lambda}{n} + \frac{1}{q} = 2 \), and \(C > 0 \) depending only on \(p, q \) and \(n \).

 (a) Show that this inequality cannot hold for any \(0 < \lambda < n \) such that

 \[
 \frac{1}{p} + \frac{\lambda}{n} + \frac{1}{q} \neq 2.
 \]

 (b) If \(\lambda = n - 2 \) and \(p = q \), for which values of \(n \) and \(p \) does the Hardy-Littlewood-Sobolev inequality hold?

 (c) Is it possible to choose \(p = q = 2 \) in the Hardy-Littlewood-Sobolev inequality?

3. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined as

 \[
 f(x) := \begin{cases} \sqrt{1-|x|^2}, & |x| \leq 1, \\ 0, & |x| > 1. \end{cases}
 \]

 (a) Sketch the graph of this function. Does this function belong to any of these classes (justify your answer): \(C(\mathbb{R}^2), C^1(\mathbb{R}^2), C^\infty(\mathbb{R}^2), C_c(\mathbb{R}^2), C_c^1(\mathbb{R}^2), C_c^\infty(\mathbb{R}^2) \)?

 (b) (extra credit) Prove that this function belongs to \(W^{1,p}(\mathbb{R}^2) \) for any \(p \in [1, 2) \).
4. Let X_1, \ldots, X_n be independent identically distributed $N(0, \theta)$ where $0 < \theta < \infty$.

(a) Find a sufficient statistic for θ.

(b) Find an unbiased estimator of θ based on the above sufficient statistic and find the variance of the estimator.

5. Let X_1, \ldots, X_n be an independent identically distributed sample from the Cauchy distribution with probability density function given by

$$f(x; \theta) = \frac{1}{\pi[1 + (x - \theta)^2]}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

(a) Find the Cramer-Rao lower bound for an unbiased estimator of θ.

(b) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} - \theta)$ if $\hat{\theta}$ is the maximum likelihood estimator of θ?

6. Let X_1, \ldots, X_n be a random sample from a gamma distribution with parameters $\alpha = 3$ and $\beta = \theta$. Let $H_0 : \theta = 2$ versus $H_1 : \theta > 2$.

(a) Show that there exists a uniformly most powerful test for H_0 against H_1, determine the statistic Y upon which the test may be based, and indicate the nature of the best critical region.

(b) Find the probability density function of the statistic Y in this problem part (a). If we want a significance level of 0.05, write an equation which can be used to determine the critical region. Let $\gamma(\theta), \theta \geq 2$, be the power function of the test. Express the power function as an integral.