Problem 1.

(a) Find all 2×2 matrices A such that

$$A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

(b) Find all 2×2 matrices A such that

$$A^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Problem 2. Suppose

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

(a) Find the four fundamental subspaces (column space, null space, row space and left null space) of A.

(b) Find the set of all 3×3 real matrices that have the same fundamental subspaces as A.

Problem 3.

(a) Let

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$

What are the eigenvalues of A?

(b) Let B be an $n \times n$ real symmetric matrix with all zeros on the diagonal (B_{ll} for $l = 1, \ldots, n$). Furthermore, suppose that $I + B$ is positive definite. Prove that the largest eigenvalue of B is less than $n - 1$.

1
Problem 4. Let \(X \) and \(Y \) be random variables such that \(E(X^k) \) and \(E(Y^k) \) exist for \(k = 1, 2, 3, \ldots \). If the ratio \(X/Y \) and its denominator \(Y \) are independent, prove that \(E[(X/Y)^k] = E(X^k)/E(Y^k), k = 1, 2, 3, \ldots \).

Problem 5. Let \(X_1, \ldots, X_n \) be a random sample from
\[
f(x; \theta) = \frac{\exp\{-x - \theta\}}{(1 + \exp\{-x - \theta\})^2}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.
\]
Show that the likelihood equation has a unique solution \(\hat{\theta} \) and the solution is a maximum. Assume that the regularity conditions hold. What can one say about the asymptotic properties of the estimator \(\hat{\theta} \)? Derive an \((1 - \alpha)\) large sample confidence interval for \(\theta_0 \) the true parameter.

Problem 6. Let \(X_1, \ldots, X_n \) denote a random sample from a gamma distribution with \(\alpha = 3 \) and \(\beta = \theta \). Let \(H_0 : \theta = 2 \) and \(H_1 : \theta > 2 \). The gamma density with parameters \((\alpha, \beta)\), \(0 < \alpha, \beta < \infty\), is given by
\[
f(x) = \begin{cases}
\frac{x^{\alpha-1}\exp\{-x/\beta\}}{\Gamma(\alpha)\beta^\alpha}, & 0 < x < \infty, \\
0, & \text{otherwise.}
\end{cases}
\]

(a) Show that there exists a uniformly most powerful test for \(H_0 \) against \(H_1 \), determine the statistics \(Y \) upon which the test may be based, and indicate the nature of the best critical region.

(b) Find the distribution of \(Y \) in Part(a) of this problem. If we want a significance level of 0.05, write an equation which can be used to determine the critical region. Express the power function as an integral.