1) Sketch the region of integration, reverse the order of integration and evaluate
\[\int_0^2 \int_0^{4-x^2} \frac{xe^{2y}}{4-y} \, dy \, dx \]

2) Evaluate by converting to polar coordinates and integrating
\[\int_0^{\pi/2} \int_0^{\sqrt{1-y^2}} \frac{1}{1+x^2+y^2} \, dy \, dx \]

3) Find the coordinates of the center of mass of a thin triangular plate formed by the points (0,0), (0,1), (1,0) where the density within this area is given by \(\rho = x + y \)

4) Evaluate, using triple integration, the volume of the region in the first octant bounded by the coordinate planes \((x=0, y=0, z=0) \) the plane \(y + z = 2 \) and the parabolic cylinder \(x = 4 - y^2 \)

5) Find the mass of the solid that has a density \(\rho = yz \) and is enclosed by the surfaces \(z = 1 - y^2 \) \((y \geq 0) \), \(z = 0 \), \(y = 0 \), \(x = -1 \), \(x = 1 \)